Chemotaxis of nonbiological colloidal rods.

Chemotaxis is the movement of organisms toward or away from a chemical attractant or toxin by a biased random walk process. Here we describe the first experimental example of chemotaxis outside biological systems. Platinum-gold rods 2.0 microm long exhibit directed movement toward higher hydrogen peroxide concentrations through "active diffusion." Brownian dynamics simulations reveal that no "temporal sensing" algorithm, commonly attributed to bacteria, is necessary; rather, the observed chemotaxis can be explained by random walk physics in a gradient of the active diffusion coefficient.

[1]  J. Adler Chemotaxis in Bacteria , 1966, Science.

[2]  R. Macnab,et al.  The gradient-sensing mechanism in bacterial chemotaxis. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Adler,et al.  "Decision"-Making in Bacteria: Chemotactic Response of Escherichia coli to Conflicting Stimuli , 1974, Science.

[4]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[5]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[6]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[7]  D B Dusenbery,et al.  Spatial sensing of stimulus gradients can be superior to temporal sensing for free-swimming bacteria. , 1998, Biophysical journal.

[8]  Thomas E. Mallouk,et al.  Orthogonal Self‐Assembly on Colloidal Gold‐Platinum Nanorods , 1999 .

[9]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[10]  H. Berg Motile Behavior of Bacteria , 2000 .

[11]  F. Schweitzer,et al.  Brownian particles far from equilibrium , 2000 .

[12]  P. Devreotes,et al.  Eukaryotic Chemotaxis: Distinctions between Directional Sensing and Polarization* , 2003, Journal of Biological Chemistry.

[13]  Yanyan Cao,et al.  Catalytic nanomotors: autonomous movement of striped nanorods. , 2004, Journal of the American Chemical Society.

[14]  Roberto Piazza,et al.  'Thermal forces': colloids in temperature gradients , 2004 .

[15]  H. Watarai,et al.  Magnetophoresis and electromagnetophoresis of microparticles in liquids , 2004, Analytical and bioanalytical chemistry.

[16]  Th. W. Engelmann,et al.  Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thierischer Organismen , 1881, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[17]  Yang Wang,et al.  Catalytic micropumps: microscopic convective fluid flow and pattern formation. , 2005, Journal of the American Chemical Society.

[18]  Dieter Braun,et al.  Why molecules move along a temperature gradient , 2006, Proceedings of the National Academy of Sciences.

[19]  Yang Wang,et al.  Catalytically induced electrokinetics for motors and micropumps. , 2006, Journal of the American Chemical Society.

[20]  B. Brembs,et al.  Order in Spontaneous Behavior , 2007, PloS one.

[21]  R. Golestanian,et al.  Designing phoretic micro- and nano-swimmers , 2007, cond-mat/0701168.

[22]  Ramin Golestanian,et al.  Self-motile colloidal particles: from directed propulsion to random walk. , 2007, Physical review letters.