Regular and positive noncommutative rational functions

Call a noncommutative rational function $r$ regular if it has no singularities, i.e., $r(X)$ is defined for all tuples of self-adjoint matrices $X$. In this article regular noncommutative rational functions $r$ are characterized via the properties of their (minimal size) linear systems realizations $r=c^* L^{-1}b$. It is shown that $r$ is regular if and only if $L=A_0+\sum_jA_j x_j$ is privileged. Roughly speaking, a linear pencil $L$ is privileged if, after a finite sequence of basis changes and restrictions, the real part of $A_0$ is positive definite and the other $A_j$ are skew-adjoint. The second main result is a solution to a noncommutative version of Hilbert's 17th problem: a positive regular noncommutative rational function is a sum of squares.

[1]  J. Helton,et al.  Linear matrix inequality representation of sets , 2003, math/0306180.

[2]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[3]  J. Helton,et al.  NONCOMMUTATIVE CONVEXITY ARISES FROM LINEAR MATRIX INEQUALITIES. , 2006 .

[4]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Schur--Agler and Herglotz--Agler classes of functions: positive-kernel decompositions and transfer-function realizations , 2013, 1310.2187.

[5]  John P. D'Angelo,et al.  Hermitian analogues of Hilbert's 17-th problem , 2010, 1012.2479.

[6]  Steven G. Krantz,et al.  Function Theory of Several Complex Variables: Second Edition , 2001 .

[7]  J. Helton,et al.  Strong majorization in a free ✱-algebra , 2007 .

[8]  Jim Agler,et al.  Global Holomorphic Functions in Several Non-Commuting Variables II , 2013, Canadian Mathematical Bulletin.

[9]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[10]  Joseph A. Ball,et al.  Structured Noncommutative Multidimensional Linear Systems , 2005, SIAM J. Control. Optim..

[11]  Harm Derksen,et al.  Polynomial degree bounds for matrix semi-invariants , 2015, ArXiv.

[12]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Singularities of rational functions and minimal factorizations: The noncommutative and the commutative setting , 2009 .

[13]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Noncommutative rational functions, their difference-differential calculus and realizations , 2010, Multidimens. Syst. Signal Process..

[14]  I. Klep,et al.  Free Function Theory Through Matrix Invariants , 2014, Canadian Journal of Mathematics.

[15]  Scott McCullough Factorization of operator-valued polynomials in several non-commuting variables☆ , 2001 .

[16]  Christopher S. Nelson A Real Nullstellensatz for Matrices of Non-Commutative Polynomials , 2013, 1305.0799.

[17]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[18]  Mihai Putinar,et al.  Noncommutative sums of squares , 2005 .

[19]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[20]  J. Pascoe,et al.  Free Pick functions: representations, asymptotic behavior and matrix monotonicity in several noncommuting variables , 2013, 1309.1791.

[21]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[22]  J. Helton “Positive” noncommutative polynomials are sums of squares , 2002 .

[23]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[24]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Contractive determinantal representations of stable polynomials on a matrix polyball , 2015, 1503.06161.

[25]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[26]  Tim Netzer,et al.  Polynomials with and without determinantal representations , 2010, 1008.1931.

[27]  J. Volčič,et al.  Matrix coefficient realization theory of noncommutative rational functions. , 2015, 1505.07472.

[28]  V. Klee Separation properties of convex cones , 1955 .

[29]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[30]  Roland Speicher,et al.  Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem , 2013, 1303.3196.

[31]  M. Marshall Positive polynomials and sums of squares , 2008 .

[32]  G. Bergman Rational relations and rational identities in division rings , 1976 .

[33]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Allaberen Ashyralyev,et al.  Partial Differential Equations of Elliptic Type , 2004 .

[36]  Jieping Ye,et al.  Matrix Inequalities: A Symbolic Procedure to Determine Convexity Automatically , 2003, Integral Equations and Operator Theory.

[37]  J. William Helton,et al.  The Tracial Hahn-Banach Theorem, Polar Duals, Matrix Convex Sets, and Projections of Free Spectrahedra , 2014, 1407.8198.

[38]  Petter Brändén Obstructions to determinantal representability , 2011 .

[39]  I. Klep,et al.  Free loci of matrix pencils and domains of noncommutative rational functions , 2015, 1512.02648.

[40]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[41]  Christophe Reutenauer,et al.  Inversion height in free fields , 1996 .

[42]  Claudio Procesi,et al.  A non-commutative real Nullstellensatz and Hilbert's 17th problem , 1976 .

[43]  Paul M. Cohn,et al.  Skew Fields: Theory of General Division Rings , 1995 .

[44]  S. A. Amitsur Rational identities and applications to algebra and geometry , 1966 .

[45]  S. Krantz Function theory of several complex variables , 1982 .

[46]  M. Sain,et al.  Poles and zeros of matrices of rational functions , 1991 .