Computational Fluid Dynamics Study of a Small Vertical Axis Wind Turbine with Ball-Shaped Blades

The computational fluid dynamics analysis of a small vertical axis wind turbine with ball-shaped blades has been done in this paper. First, a three-dimensioned model of the wind turbine with the ball-shaped blades has been constructed by using the software of FLUENT 6.3. Then, by giving the size parameters and shape parameters of the blades, the simulation has been done and the corresponding simulation results have been obtained. The contuours of static pressure around the wind blade area has been shown. The simulated model and the results can be used for finding the factors which will affect the power efficiency of this type of wind turbine in the future. Finally, the simulation results of the blade with zero curvature radius and curvature radius of 2 are shown and compared in order to demonstrate the effectiveness of this computational fluid dynamics analysis method. It can be concluded that the blades with curvature of 2 can obtain more toruqe comparing with the zero one and it would be the more suitable option in the blade design.