Astrophysical Model Selection in Gravitational Wave Astronomy

Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

[1]  Bernard F. Schutz,et al.  Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.

[2]  G. Nelemans,et al.  GRAVITATIONAL-WAVE EMISSION FROM COMPACT GALACTIC BINARIES , 2012, 1201.4613.

[3]  Michele Vallisneri,et al.  Beyond the fisher-matrix formalism: exact sampling distributions of the maximum-likelihood estimator in gravitational-wave parameter estimation. , 2011, Physical review letters.

[4]  T. Littenberg A Detection Pipeline for Galactic Binaries in LISA Data , 2011, 1106.6355.

[5]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[6]  Jonathan R. Gair,et al.  Reconstructing the massive black hole cosmic history through gravitational waves , 2010, 1011.5893.

[7]  A. Buonanno,et al.  Extreme Mass-Ratio Inspirals in the Effective-One-Body Approach: Quasi-Circular, Equatorial Orbits around a Spinning Black Hole , 2010, 1009.6013.

[8]  J. Gair,et al.  Constraining properties of the black hole population using LISA , 2010, 1009.6172.

[9]  Parameter estimation from gravitational waves generated by nonspinning binary black holes with laser interferometers: Beyond the Fisher information , 2010, 1004.4537.

[10]  J. Gair,et al.  LISA extreme-mass-ratio inspiral events as probes of the black hole mass function , 2010, 1004.1921.

[11]  N. Cornish,et al.  Discriminating between a stochastic gravitational wave background and instrument noise , 2010, 1002.1291.

[12]  T. Littenberg,et al.  Separating gravitational wave signals from instrument artifacts , 2010, 1008.1577.

[13]  I. Mandel Parameter estimation on gravitational waves from multiple coalescing binaries , 2009, 0912.5531.

[14]  S. Babak,et al.  Mock LISA data challenge for the Galactic white dwarf binaries , 2009, 0911.3020.

[15]  C. Deloye,et al.  ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES , 2009, 0904.1953.

[16]  G. Nelemans,et al.  The influence of short-term variations in AM CVn systems on LISA measurements , 2009, 0909.1796.

[17]  W. M. Wood-Vasey,et al.  TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED , 2009, 0908.0536.

[18]  P. Graff,et al.  The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.

[19]  T. Littenberg,et al.  Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.

[20]  J. C. Cornish Solution to the galactic foreground problem for LISA , 2006, astro-ph/0611546.

[21]  N. Cornish,et al.  Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.

[22]  N. Cornish,et al.  LISA data analysis using Markov chain Monte Carlo methods , 2005 .

[23]  Joshua G. Hale,et al.  Journal of the Royal Statistical Society Notes on the Submission of Papers , 2005 .

[24]  A. Vecchio,et al.  Effect of the LISA response function on observations of monochromatic sources , 2004, gr-qc/0406039.

[25]  G. Nelemans,et al.  Short-period AM CVn systems as optical, X-ray and gravitational-wave sources , 2003, astro-ph/0312193.

[26]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[27]  Peter Green,et al.  Highly Structured Stochastic Systems , 2003 .

[28]  N. Cornish,et al.  LISA Data Analysis: Source Identification and Subtraction , 2003, astro-ph/0301548.

[29]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[30]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[31]  G. Nelemans,et al.  Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars , 2001, astro-ph/0101123.

[32]  G. Nelemans,et al.  Population synthesis for double white dwarfs. I. Close detached systems. , 2000, astro-ph/0010457.

[33]  David J. C. MacKay,et al.  Comparison of Approximate Methods for Handling Hyperparameters , 1999, Neural Computation.

[34]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[35]  R. Webbink,et al.  Gravitational radiation from the Galaxy , 1990 .

[36]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[37]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[38]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[39]  R. Stephenson A and V , 1962, The British journal of ophthalmology.