Turbulence profiling methods applied to ESO's adaptive optics facility

Two algorithms were recently studied for C2n profiling from wide-field Adaptive Optics (AO) measurements on GeMS (Gemini Multi-Conjugate AO system). They both rely on the Slope Detection and Ranging (SLODAR) approach, using spatial covariances of the measurements issued from various wavefront sensors. The first algorithm estimates the C2n profile by applying the truncated least-squares inverse of a matrix modeling the response of slopes covariances to various turbulent layer heights. In the second method, the profile is estimated by deconvolution of these spatial cross-covariances of slopes. We compare these methods in the new configuration of ESO Adaptive Optics Facility (AOF), a high-order multiple laser system under integration. For this, we use measurements simulated by the AO cluster of ESO. The impact of the measurement noise and of the outer scale of the atmospheric turbulence is analyzed. The important influence of the outer scale on the results leads to the development of a new step for outer scale fitting included in each algorithm. This increases the reliability and robustness of the turbulence strength and profile estimations.

[1]  Thierry Fusco,et al.  Impact of Cn2 profile structure on wide-field AO performance , 2010, Astronomical Telescopes + Instrumentation.

[2]  B L Ellerbroek,et al.  Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Dani Guzman,et al.  Using the ${C_{n}^{2}}$ and wind profiler method with wide-field laser-guide-stars adaptive optics to quantify the frozen-flow decay , 2014 .

[4]  Richard W. Wilson,et al.  SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor , 2002 .

[5]  Franck Lascaux,et al.  Towards a reliability assessment of the C2N and wind speed vertical profiles retrieved from GeMS , 2014, Astronomical Telescopes and Instrumentation.

[6]  Charles P. Cavedoni,et al.  Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration , 2013, 1310.6199.

[7]  Richard W. Wilson,et al.  Determination of the profile of atmospheric optical turbulence strength from SLODAR data , 2006 .

[8]  Sarah J. Diggs,et al.  Gemini multiconjugate adaptive optics system review – II. Commissioning, operation and overall performance , 2014, 1402.6906.

[9]  M. Kiekebusch,et al.  GRAAL: a seeing enhancer for the NIR wide-field imager Hawk-I , 2010, Astronomical Telescopes + Instrumentation.

[10]  Christophe Dupuy,et al.  ESO adaptive optics facility progress report , 2012, Other Conferences.

[11]  R. Muradore,et al.  GALACSI system design and analysis , 2012, Other Conferences.

[12]  Rodolphe Conan Modélisation des effets de l'échelle externe de cohérence spatiale du front d'onde pour l'observation à haute résolution angulaire en astronomie : application à l'optique adaptative, à l'interférométrie et aux très grands télescopes , 2000 .

[13]  G. Rousset,et al.  Tomography approach for multi-object adaptive optics. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  Benoit Neichel,et al.  Statistics of atmospheric turbulence at Cerro Pachon using the GeMS profiler , 2014, Astronomical Telescopes and Instrumentation.

[15]  Pascal Jagourel,et al.  ATLAS: the E-ELT laser tomographic adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.

[16]  M. Le Louarn,et al.  Validation tests of the AOF Cn2 profiler , 2014, Astronomical Telescopes and Instrumentation.

[17]  Gary Chanan,et al.  Atmospheric turbulence profiling with SLODAR using multiple adaptive optics wavefront sensors. , 2008, Applied optics.

[18]  Francois Rigaut,et al.  Atmospheric turbulence profiling using multiple laser star wavefront sensors , 2012 .