Analytical modeling of III-V solar cells close to the fundamental limit

A highly effective strategy of photon management is to use a back surface reflector. In this work, we present a full analytical model incorporating effects from both the modified generation function and photon recycling in GaAs solar cells with a BSR. We discuss the impact of doping concentration, non-radiative recombination, solar cell dimensions and BSR reflectivity on the efficiency, and compare the prediction of the device models to experimental data measured on GaAs devices. We use the model to predict the performance of alternative III-V materials, such as InP, comparing the predicted performance to state-of-the-art GaAs solar cells.

[1]  J. L. Balenzategui,et al.  Detailed modelling of photon recycling: application to GaAs solar cells , 2006 .

[2]  J. R. Meyer,et al.  Drift-diffusion modeling of InP-based triple junction solar cells , 2013, Photonics West - Optoelectronic Materials and Devices.

[3]  J. P. Connolly,et al.  Observation of photon recycling in strain-balanced quantum well solar cells , 2007 .

[4]  Andreas W. Bett,et al.  Simulating single‐junction GaAs solar cells including photon recycling , 2006 .

[5]  Darius Kuciauskas,et al.  Effects of Internal Luminescence and Internal Optics on $V_{\bf oc}$ and $J_{\bf sc}$ of III--V Solar Cells , 2013, IEEE Journal of Photovoltaics.

[6]  D. J. Flood,et al.  Strained In0.40Al0.60As window layers for indium phosphide solar cells , 1994 .

[7]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[8]  P. Asbeck Self‐absorption effects on the radiative lifetime in GaAs‐GaAlAs double heterostructures , 1977 .

[9]  Mehul C. Raval,et al.  solar cells , 2006 .

[10]  P. Sundgren,et al.  Highly strained InGaAs∕GaAs multiple quantum-wells for laser applications in the 1200–1300 nm wavelength regime , 2005 .

[11]  F. Tuminello,et al.  Extending the 1-D Hovel Model for Coherent and Incoherent Back Reflections in Homojunction Solar Cells , 2013, IEEE Journal of Quantum Electronics.

[12]  Jenny Nelson,et al.  Observation of suppressed radiative recombination in single quantum well p-i-n photodiodes , 1997 .

[13]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[14]  UK,et al.  Mirrored strain-balanced quantum well concentrator cells in the radiative limit , 2010 .

[15]  Myles A. Steiner,et al.  Optical enhancement of the open-circuit voltage in high quality GaAs solar cells , 2013 .

[16]  Robert J. Walters,et al.  Optical properties of Si-doped and Be-doped InAlAs lattice-matched to InP grown by molecular beam epitaxy , 2013 .

[17]  Jerry R. Meyer,et al.  Simulation of novel InAlAsSb solar cells , 2012, OPTO.

[18]  Darius Kuciauskas,et al.  Effects of Internal Luminescence and Internal Optics on Voc and Jsc of III-V Solar Cells , 2014 .

[19]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[20]  Antonio Martí,et al.  Absolute limiting efficiencies for photovoltaic energy conversion , 1994 .