Robustness of random graphs based on graph spectra.

It has been recently proposed that the robustness of complex networks can be efficiently characterized through the natural connectivity, a spectral property of the graph which corresponds to the average Estrada index. The natural connectivity corresponds to an average eigenvalue calculated from the graph spectrum and can also be interpreted as the Helmholtz free energy of the network. In this article, we explore the use of this index to characterize the robustness of Erdős-Rényi (ER) random graphs, random regular graphs, and regular ring lattices. We show both analytically and numerically that the natural connectivity of ER random graphs increases linearly with the average degree. It is also shown that ER random graphs are more robust than the corresponding random regular graphs with the same number of vertices and edges. However, the relative robustness of ER random graphs and regular ring lattices depends on the average degree and graph size: there is a critical graph size above which regular ring lattices are more robust than random graphs. We use our analytical results to derive this critical graph size as a function of the average degree.

[1]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Ernesto Estrada,et al.  Network robustness to targeted attacks. The interplay of expansibility and degree distribution , 2006 .

[3]  Michele Benzi,et al.  The Physics of Communicability in Complex Networks , 2011, ArXiv.

[4]  Yong Li,et al.  ATTACK VULNERABILITY OF COMPLEX NETWORKS BASED ON LOCAL INFORMATION , 2007 .

[5]  Yilun Shang,et al.  Biased edge failure in scale-free networks based on natural connectivity , 2012 .

[6]  Ernesto Estrada,et al.  Spectral scaling and good expansion properties in complex networks , 2006, Europhysics Letters (EPL).

[7]  Yilun Shang,et al.  Perturbation results for the Estrada index in weighted networks , 2011 .

[8]  J. Spencer,et al.  Explosive Percolation in Random Networks , 2009, Science.

[9]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[10]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[11]  Benny Sudakov,et al.  The Largest Eigenvalue of Sparse Random Graphs , 2001, Combinatorics, Probability and Computing.

[12]  Ernesto Estrada Characterization of 3D molecular structure , 2000 .

[13]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[14]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[15]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[16]  Adilson E. Motter,et al.  Bounding network spectra for network design , 2007, 0705.0089.

[17]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[18]  Hongzhong Deng,et al.  Vulnerability of complex networks under intentional attack with incomplete information , 2007 .

[19]  G. J. Rodgers,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 38 (2005) 9431–9437 doi:10.1088/0305-4470/38/43/003 Eigenvalue spectra of complex networks , 2005 .

[20]  Tan Yue-jin,et al.  A Robustness Model of Complex Networks with Tunable Attack Information Parameter , 2007 .

[21]  Vasek Chvátal,et al.  Tough graphs and hamiltonian circuits , 1973, Discret. Math..

[22]  Ricard V. Solé,et al.  Topological Vulnerability of the European Power Grid under Errors and Attacks , 2007, Int. J. Bifurc. Chaos.

[23]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[24]  Michalis Faloutsos,et al.  Jellyfish: A conceptual model for the as Internet topology , 2006, Journal of Communications and Networks.

[25]  Soundar R. T. Kumara,et al.  Survivability of multiagent-based supply networks: a topological perspect , 2004, IEEE Intelligent Systems.

[26]  Nicholas C. Wormald,et al.  Generating Random Regular Graphs Quickly , 1999, Combinatorics, Probability and Computing.

[27]  Martin Randles,et al.  Distributed redundancy and robustness in complex systems , 2011, J. Comput. Syst. Sci..

[28]  Gunter Bolch,et al.  Analytical approach to discrete optimization of queueing networks , 1990, Comput. Commun..

[29]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[30]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[31]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[32]  H. A. Jung,et al.  On a class of posets and the corresponding comparability graphs , 1978, J. Comb. Theory B.

[33]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[34]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[35]  David M Levinson,et al.  Measuring the Structure of Road Networks , 2007 .

[36]  Luis A. Nunes Amaral,et al.  Complex Systems - A New Paradigm for the Integrative Study of Management, Physical, and Technological Systems , 2007, Manag. Sci..

[37]  F. Chung,et al.  Spectra of random graphs with given expected degrees , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Mauricio Barahona,et al.  Robustness of regular ring lattices based on natural connectivity , 2011, Int. J. Syst. Sci..

[39]  Ernesto Estrada,et al.  Statistical-mechanical approach to subgraph centrality in complex networks , 2007, 0905.4098.

[40]  M. Krishnamoorthy,et al.  Fault diameter of interconnection networks , 1987 .

[41]  Marián Boguñá,et al.  Topology of the world trade web. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Bojan Mohar,et al.  Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.

[45]  Van H. Vu,et al.  Generating Random Regular Graphs , 2006, Comb..

[46]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[48]  Ante Graovac,et al.  Monte Carlo approach to Estrada index , 2007 .

[49]  Shang Yi-Lun Local Natural Connectivity in Complex Networks , 2011 .

[50]  J. A. Peña,et al.  Estimating the Estrada index , 2007 .

[51]  S. Louis Hakimi,et al.  On Computing a Conditional Edge-Connectivity of a Graph , 1988, Inf. Process. Lett..

[52]  Wu Jun,et al.  Natural Connectivity of Complex Networks , 2010 .