Clinical features of TBK1 carriers compared with C9orf72, GRN and non-mutation carriers in a Belgian cohort

Loss-of-function mutations in TBK1 have been identified in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Van Mossevelde et al. compare TBK1-mutation carriers with FTD, ALS or FTD-ALS to patients carrying GRN or C9orf72 mutations. Differences are seen in age of onset, extrapyramidal symptoms, and in memory, language and behaviour.

[1]  C. Broeckhoven,et al.  The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter , 2015, Molecular Psychiatry.

[2]  C. van Broeckhoven,et al.  Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort , 2015, Neurology.

[3]  M. Wortmann,et al.  World Alzheimer report 2014: Dementia and risk reduction , 2015, Alzheimer's & Dementia.

[4]  Kevin F. Bieniek,et al.  Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease , 2015, Acta Neuropathologica.

[5]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[6]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[7]  Timothy A. Miller,et al.  Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes , 2015, Annals of neurology.

[8]  Martin Prince,et al.  World Alzheimer Report 2014: Dementia and risk reduction: An analysis of protective and modifiable risk factors , 2014 .

[9]  F. Jessen,et al.  Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration , 2014, Acta Neuropathologica.

[10]  J. Kirby,et al.  The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype , 2014, Acta Neuropathologica.

[11]  Jürgen Sauter,et al.  Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing , 2014, BMC Genomics.

[12]  C. Broeckhoven,et al.  Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum , 2013, Trends in Neurosciences.

[13]  S. Chung,et al.  New Perspective on Parkinsonism in Frontotemporal Lobar Degeneration , 2013, Journal of movement disorders.

[14]  C. van Broeckhoven,et al.  Distinct clinical characteristics of C9orf72 expansion carriers compared with GRN, MAPT, and nonmutation carriers in a Flanders-Belgian FTLD cohort. , 2013, JAMA neurology.

[15]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[16]  C. Broeckhoven,et al.  The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. , 2012 .

[17]  P. S. St George-Hyslop,et al.  SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2012, Neurology.

[18]  C. van Broeckhoven,et al.  The genetics and neuropathology of frontotemporal lobar degeneration , 2012, Acta Neuropathologica.

[19]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[20]  C. van Broeckhoven,et al.  The molecular basis of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum , 2012, Annals of medicine.

[21]  C. Jack,et al.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.

[22]  David T. Jones,et al.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 , 2012, Brain : a journal of neurology.

[23]  Nick C Fox,et al.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.

[24]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[25]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[26]  P. D. Rijk,et al.  Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing , 2011, Nature Biotechnology.

[27]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[28]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[29]  P. Cohen,et al.  Polyubiquitin Binding to Optineurin Is Required for Optimal Activation of TANK-binding Kinase 1 and Production of Interferon β* , 2011, The Journal of Biological Chemistry.

[30]  Z. Elazar,et al.  TBK1 Mediates Crosstalk Between the Innate Immune Response and Autophagy , 2011, Science Signaling.

[31]  J. Trojanowski,et al.  A harmonized classification system for FTLD-TDP pathology , 2011, Acta Neuropathologica.

[32]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[33]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[34]  R. Gross Spotlight on the January 4 Issue , 2011, Neurology.

[35]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[36]  Sébastien Ourselin,et al.  Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations☆ , 2010, NeuroImage.

[37]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[38]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[39]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[40]  John Q. Trojanowski,et al.  Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update , 2009, Acta Neuropathologica.

[41]  C R Jack,et al.  Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations , 2009, Neurology.

[42]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[43]  C R Jack,et al.  Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN , 2009, Neurology.

[44]  Nir Ben-Tal,et al.  The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures , 2008, Nucleic Acids Res..

[45]  C. Broeckhoven,et al.  Granulin mutations associated with frontotemporal lobar degeneration and related disorders: An update , 2008, Human mutation.

[46]  P. Deyn,et al.  Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia , 2008, Neurobiology of Aging.

[47]  B. Boeve,et al.  Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). , 2008, Archives of neurology.

[48]  Marc Cruts,et al.  Loss of progranulin function in frontotemporal lobar degeneration. , 2008, Trends in genetics : TIG.

[49]  M. Swash,et al.  Electrodiagnostic criteria for diagnosis of ALS , 2008, Clinical Neurophysiology.

[50]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[51]  Andrew King,et al.  A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. , 2008, Brain : a journal of neurology.

[52]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[53]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[54]  J. Neuhaus,et al.  Comparison of family histories in FTLD subtypes and related tauopathies , 2005, Neurology.

[55]  L. Serrano,et al.  Prediction of water and metal binding sites and their affinities by using the Fold-X force field. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  François Stricher,et al.  The FoldX web server: an online force field , 2005, Nucleic Acids Res..

[57]  Catherine Lomen-Hoerth,et al.  The overlap of amyotrophic lateral sclerosis and frontotemporal dementia , 2002, Neurology.

[58]  L. Serrano,et al.  Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. , 2002, Journal of molecular biology.

[59]  S. Henikoff,et al.  Predicting deleterious amino acid substitutions. , 2001, Genome research.

[60]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[61]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[62]  D E Kuhl,et al.  Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. , 1996, Radiology.

[63]  S. Boothroyd RESEARCH: A RETROSPECT. , 1925, Science.