A New Landmark-Independent Tool for Quantifying and Characterizing Morphologic Variation

This paper develops a landmark-independent, deformable-registration-based framework that can utilize 3D surface images generated by any multidimensional imaging modality. The framework provides compact representations of image differences that are used to assess and compare potentially biologically relevant changes in 3D shape. The utility and sensitivity of the tools developed in this work are demonstrated using similarity retrieval of shape changes in a normal developmental time series of chick embryos. The results motivate future use of these tools for defining trajectories of normal growth, aiding research into conditions causing disruptions to normal growth.

[1]  Theodore Garland,et al.  Developmental regulation of skull morphology II: ontogenetic dynamics of covariance , 2004, Evolution & development.

[2]  Peter T Fox,et al.  Asymmetry of the brain surface from deformation field analysis , 2003, Human brain mapping.

[3]  Viktor Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1992, Journal of morphology.

[4]  Tron A. Darvann,et al.  Craniofacial statistical deformation models of wild-type mice and Crouzon mice , 2007, SPIE Medical Imaging.

[5]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[6]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[7]  Miriam Leah Zelditch,et al.  Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate , 2004, Journal of anatomy.

[8]  Frithjof Kruggel,et al.  Segmentation of vector fields by critical point analysis: application to brain deformation , 2002, Object recognition supported by user interaction for service robots.

[9]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  J. Fitzpatrick,et al.  Medical image processing and analysis , 2000 .

[11]  David R. Haynor,et al.  Nonrigid multimodality image registration , 2001, SPIE Medical Imaging.

[12]  R. Battle Cleft lip and palate. , 1955, The Practitioner.

[13]  Per Larsen,et al.  Computational mouse atlases and their application to automatic assessment of craniofacial dysmorphology caused by the Crouzon mutation Fgfr2C342Y , 2007, Journal of anatomy.

[14]  Luis Ibáñez,et al.  The ITK Software Guide , 2005 .

[15]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[16]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[17]  Linda G. Shapiro,et al.  A new tool for quantifying and characterizing asymmetry in bilaterally paired structures , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[18]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[19]  D. Hill,et al.  Non-rigid image registration: theory and practice. , 2004, The British journal of radiology.

[20]  P. David Polly,et al.  Adaptive Zones and the Pinniped Ankle: A Three-Dimensional Quantitative Analysis of Carnivoran Tarsal Evolution , 2008 .

[21]  Fred L. Bookstein,et al.  Landmark methods for forms without landmarks: morphometrics of group differences in outline shape , 1997, Medical Image Anal..

[22]  Thierry Pun,et al.  The Truth about Corel - Evaluation in Image Retrieval , 2002, CIVR.

[23]  J. Thirion,et al.  Deformation analysis to detect and quantify active lesions in three-dimensional medical image sequences , 1999, IEEE Transactions on Medical Imaging.

[24]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[25]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[26]  Alan F. Smeaton,et al.  An Improved Spatiogram Similarity Measure for Robust Object Localisation , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[27]  K. Worsley,et al.  THE DETECTION OF LOCAL SHAPE CHANGES VIA THE GEOMETRY OF HOTELLING’S T 2 FIELDS 1 , 1999 .

[28]  Tron A. Darvann,et al.  Automated quantification and analysis of mandibular asymmetry , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[29]  Sylvain Prima,et al.  New Algorithms to Map Asymmetries of 3D Surfaces , 2008, MICCAI.

[30]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[31]  Stanley T. Birchfield,et al.  Spatiograms versus histograms for region-based tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  J. Gower Generalized procrustes analysis , 1975 .

[33]  Damian M. Lyons Sharing landmark information using mixture of Gaussian terrain spatiograms , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Karl J. Friston,et al.  Identifying global anatomical differences: Deformation‐based morphometry , 1998 .

[35]  A. Goldstein Convex programming in Hilbert space , 1964 .

[36]  Linda G. Shapiro,et al.  A landmark-free framework for the detection and description of shape differences in embryos , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[37]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .