Toward a Clarity of the Extreme Value Theorem
暂无分享,去创建一个
[1] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[2] A. Kock. Synthetic Differential Geometry , 1981 .
[3] M. Beeson. Foundations of Constructive Mathematics: Metamathematical Studies , 1985 .
[4] Peter Schuster,et al. Reuniting the antipodes-constructive and nonstandard views of the continuum : symposium proceedings, San Servolo, Venice, Italy, May 16-22, 1999 , 2001 .
[5] F. William Lawvere,et al. Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .
[6] Heinrich Rust. Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.
[7] David A. Ross,et al. A nonstandard proof of a lemma from constructive measure theory , 2006, Math. Log. Q..
[8] David A. Ross. The Constructive Content of Nonstandard Measure Existence Proofs—Is There Any? , 2001 .
[9] Hajime Ishihara,et al. Brouwer's fan theorem and unique existence in constructive analysis , 2005, Math. Log. Q..
[10] Yvon Gauthier,et al. Kronecker in Contemporary Mathematics. General Arithmetic as a Foundational Programme , 2013, Reports Math. Log..
[11] E. Scholz. Umberto Bottazzini: The Higher Calculus: A History of Real and Complex analysis from Euler to Weierstrass. Translated from the Italian by W. van Egmond. New York/Berlin/Heidelberg/London/Paris/Tokyo: Springer 1986. 8 Fig. VII + 332 Seiten. , 1987 .
[12] Andrzej Grzegorczyk. On the definition of computable functionals , 1955 .
[13] T. Mormann,et al. Infinitesimals as an Issue of Neo-Kantian Philosophy of Science , 2013, HOPOS: The Journal of the International Society for the History of Philosophy of Science.
[14] A. Tarski,et al. Une contribution à la théorie de la mesure , 1930 .
[15] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[16] Peter Schuster,et al. Problems, solutions, and completions , 2010, J. Log. Algebraic Methods Program..
[17] Mikhail G. Katz,et al. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.
[18] D. Bridges,et al. Constructive functional analysis , 1979 .
[19] Hélène Gispert-Chambaz. Camille Jordan et les fondements de l'analyse : comparison de la 1ère édition (1882-1887) et de la 2ème (1893) de son cours d'Analyse de l'Ecole polytechnique , 1982 .
[20] Helmut Schwichtenberg. A Direct Proof of the Equivalence between Brouwer's Fan Theorem and König's Lemma with a Uniqueness Hypothesis , 2005, J. Univers. Comput. Sci..
[21] Eberhard Knobloch,et al. Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.
[22] Ton Lindstrøm. Nonstandard Analysis and its Applications: AN INVITATION TO NONSTANDARD ANALYSIS , 1988 .
[23] A. Cauchy. Cours d'analyse de l'École royale polytechnique , 1821 .
[24] David Sherry,et al. The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .
[25] Douglas S. Bridges,et al. The fan theorem and unique existence of maxima , 2006, Journal of Symbolic Logic.
[26] Frank Wattenberg,et al. Nonstandard analysis and constructivism? , 1988, Stud Logica.
[27] Ross Gagliano,et al. Review of , 2006, UBIQ.
[28] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .
[29] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[30] Ulrich Kohlenbach,et al. Effective Moduli from Ineffective Uniqueness Proofs. An Unwinding of de La Vallée Poussin's Proof for Chebycheff Approximation , 1993, Ann. Pure Appl. Log..
[31] Jérôme Havenel. Peirce's Clarifications of Continuity , 2008 .
[32] David Tall,et al. A Cauchy-Dirac Delta Function , 2012, 1206.0119.
[33] C. Allen,et al. Stanford Encyclopedia of Philosophy , 2011 .
[34] Tiziana Bascelli,et al. Galileo’s quanti: understanding infinitesimal magnitudes , 2014 .
[35] Peter Schuster,et al. Unique solutions , 2006, Math. Log. Q..
[36] W. Hatcher,et al. Calculus is Algebra. , 1982 .
[37] J. Bell. A primer of infinitesimal analysis , 1998 .
[38] Harold M. Edwards. Kronecker’s Algorithmic Mathematics , 2009 .
[39] A. Troelstra. Constructivism in mathematics , 1988 .
[40] Geoffrey Hellman,et al. Mathematical Constructivism in Spacetime , 1998, The British Journal for the Philosophy of Science.
[41] Patrick Reeder. Infinitesimals for Metaphysics: Consequences for the Ontologies of Space and Time , 2012 .
[42] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[43] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[44] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[45] Y. Gauthier. CLASSICAL FUNCTION THEORY AND APPLIED PROOF THEORY , 2014 .
[46] P. Zsombor-Murray,et al. Elementary Mathematics from an Advanced Standpoint , 1940, Nature.
[47] Douglas S. Bridges,et al. A Constructive Look at the Real Number Line , 1994 .
[48] Solomon Feferman,et al. Relationships between Constructive, Predicative and Classical Systems of Analysis , 2000 .
[49] Lígia Arantes Sad,et al. Cauchy and the problem of point-wise convergence , 2001 .
[50] E. Bishop. Foundations of Constructive Analysis , 2012 .
[51] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[52] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.
[53] Martin Davis,et al. Applied Nonstandard Analysis , 1977 .
[54] Mikhail G. Katz,et al. Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.
[55] Paul Benacerraf,et al. Philosophy of mathematics: What numbers could not be , 1965 .
[56] A. Robinson. Non-standard analysis , 1966 .
[57] Hannes Diener,et al. Sequences of real functions on [0, 1] in constructive reverse mathematics , 2009, Ann. Pure Appl. Log..
[58] Umberto Bottazzini,et al. The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .
[59] H. Jerome Keisler,et al. The Hyperreal Line , 1994 .
[60] S. Yau,et al. String theory and the geometry of the Universe's hidden dimensions , 2010 .
[61] E. Seneta. Cauchy, Augustin–Louis , 2006 .
[62] Douglas S. Bridges. Continuity and Lipschitz constants for projections , 2010, J. Log. Algebraic Methods Program..
[63] Philip Ehrlich,et al. Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .
[64] Piotr Blaszczyk,et al. Is mathematical history written by the victors , 2013, 1306.5973.
[65] Emanuele Bottazzi,et al. Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.
[66] Charles S. Peirce,et al. The Logic of Relatives , 2016 .
[67] Hajime Ishihara,et al. An omniscience principle, the König Lemma and the Hahn-Banach theorem , 1990, Math. Log. Q..
[68] K. D. Stroyan. Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .
[69] Charles Coulston Gillispie,et al. Dictionary of scientific biography , 1970 .
[70] M. Beeson. Foundations of Constructive Mathematics , 1985 .
[71] G. Hardy,et al. An Introduction to the Theory of Numbers , 1938 .
[72] Errett Bishop. The crisis in contemporary mathematics , 1975 .
[73] D. Laugwitz,et al. Eine Erweiterung der Infinitesimalrechnung , 1958 .