Toward a Clarity of the Extreme Value Theorem

We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementarity rather than a rivalry of the approaches.

[1]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[2]  A. Kock Synthetic Differential Geometry , 1981 .

[3]  M. Beeson Foundations of Constructive Mathematics: Metamathematical Studies , 1985 .

[4]  Peter Schuster,et al.  Reuniting the antipodes-constructive and nonstandard views of the continuum : symposium proceedings, San Servolo, Venice, Italy, May 16-22, 1999 , 2001 .

[5]  F. William Lawvere,et al.  Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .

[6]  Heinrich Rust Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.

[7]  David A. Ross,et al.  A nonstandard proof of a lemma from constructive measure theory , 2006, Math. Log. Q..

[8]  David A. Ross The Constructive Content of Nonstandard Measure Existence Proofs—Is There Any? , 2001 .

[9]  Hajime Ishihara,et al.  Brouwer's fan theorem and unique existence in constructive analysis , 2005, Math. Log. Q..

[10]  Yvon Gauthier,et al.  Kronecker in Contemporary Mathematics. General Arithmetic as a Foundational Programme , 2013, Reports Math. Log..

[11]  E. Scholz Umberto Bottazzini: The Higher Calculus: A History of Real and Complex analysis from Euler to Weierstrass. Translated from the Italian by W. van Egmond. New York/Berlin/Heidelberg/London/Paris/Tokyo: Springer 1986. 8 Fig. VII + 332 Seiten. , 1987 .

[12]  Andrzej Grzegorczyk On the definition of computable functionals , 1955 .

[13]  T. Mormann,et al.  Infinitesimals as an Issue of Neo-Kantian Philosophy of Science , 2013, HOPOS: The Journal of the International Society for the History of Philosophy of Science.

[14]  A. Tarski,et al.  Une contribution à la théorie de la mesure , 1930 .

[15]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[16]  Peter Schuster,et al.  Problems, solutions, and completions , 2010, J. Log. Algebraic Methods Program..

[17]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[18]  D. Bridges,et al.  Constructive functional analysis , 1979 .

[19]  Hélène Gispert-Chambaz Camille Jordan et les fondements de l'analyse : comparison de la 1ère édition (1882-1887) et de la 2ème (1893) de son cours d'Analyse de l'Ecole polytechnique , 1982 .

[20]  Helmut Schwichtenberg A Direct Proof of the Equivalence between Brouwer's Fan Theorem and König's Lemma with a Uniqueness Hypothesis , 2005, J. Univers. Comput. Sci..

[21]  Eberhard Knobloch,et al.  Leibniz's Rigorous Foundation Of Infinitesimal Geometry By Means Of Riemannian Sums , 2002, Synthese.

[22]  Ton Lindstrøm Nonstandard Analysis and its Applications: AN INVITATION TO NONSTANDARD ANALYSIS , 1988 .

[23]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[24]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[25]  Douglas S. Bridges,et al.  The fan theorem and unique existence of maxima , 2006, Journal of Symbolic Logic.

[26]  Frank Wattenberg,et al.  Nonstandard analysis and constructivism? , 1988, Stud Logica.

[27]  Ross Gagliano,et al.  Review of , 2006, UBIQ.

[28]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[29]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[30]  Ulrich Kohlenbach,et al.  Effective Moduli from Ineffective Uniqueness Proofs. An Unwinding of de La Vallée Poussin's Proof for Chebycheff Approximation , 1993, Ann. Pure Appl. Log..

[31]  Jérôme Havenel Peirce's Clarifications of Continuity , 2008 .

[32]  David Tall,et al.  A Cauchy-Dirac Delta Function , 2012, 1206.0119.

[33]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[34]  Tiziana Bascelli,et al.  Galileo’s quanti: understanding infinitesimal magnitudes , 2014 .

[35]  Peter Schuster,et al.  Unique solutions , 2006, Math. Log. Q..

[36]  W. Hatcher,et al.  Calculus is Algebra. , 1982 .

[37]  J. Bell A primer of infinitesimal analysis , 1998 .

[38]  Harold M. Edwards Kronecker’s Algorithmic Mathematics , 2009 .

[39]  A. Troelstra Constructivism in mathematics , 1988 .

[40]  Geoffrey Hellman,et al.  Mathematical Constructivism in Spacetime , 1998, The British Journal for the Philosophy of Science.

[41]  Patrick Reeder Infinitesimals for Metaphysics: Consequences for the Ontologies of Space and Time , 2012 .

[42]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[43]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[44]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[45]  Y. Gauthier CLASSICAL FUNCTION THEORY AND APPLIED PROOF THEORY , 2014 .

[46]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[47]  Douglas S. Bridges,et al.  A Constructive Look at the Real Number Line , 1994 .

[48]  Solomon Feferman,et al.  Relationships between Constructive, Predicative and Classical Systems of Analysis , 2000 .

[49]  Lígia Arantes Sad,et al.  Cauchy and the problem of point-wise convergence , 2001 .

[50]  E. Bishop Foundations of Constructive Analysis , 2012 .

[51]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[52]  Mikhail G. Katz,et al.  Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.

[53]  Martin Davis,et al.  Applied Nonstandard Analysis , 1977 .

[54]  Mikhail G. Katz,et al.  Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.

[55]  Paul Benacerraf,et al.  Philosophy of mathematics: What numbers could not be , 1965 .

[56]  A. Robinson Non-standard analysis , 1966 .

[57]  Hannes Diener,et al.  Sequences of real functions on [0, 1] in constructive reverse mathematics , 2009, Ann. Pure Appl. Log..

[58]  Umberto Bottazzini,et al.  The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .

[59]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[60]  S. Yau,et al.  String theory and the geometry of the Universe's hidden dimensions , 2010 .

[61]  E. Seneta Cauchy, Augustin–Louis , 2006 .

[62]  Douglas S. Bridges Continuity and Lipschitz constants for projections , 2010, J. Log. Algebraic Methods Program..

[63]  Philip Ehrlich,et al.  Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .

[64]  Piotr Blaszczyk,et al.  Is mathematical history written by the victors , 2013, 1306.5973.

[65]  Emanuele Bottazzi,et al.  Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.

[66]  Charles S. Peirce,et al.  The Logic of Relatives , 2016 .

[67]  Hajime Ishihara,et al.  An omniscience principle, the König Lemma and the Hahn-Banach theorem , 1990, Math. Log. Q..

[68]  K. D. Stroyan Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .

[69]  Charles Coulston Gillispie,et al.  Dictionary of scientific biography , 1970 .

[70]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[71]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[72]  Errett Bishop The crisis in contemporary mathematics , 1975 .

[73]  D. Laugwitz,et al.  Eine Erweiterung der Infinitesimalrechnung , 1958 .