An Integrated Approach to P Systems Formal Verification

This paper presents a method to formally verify P system specifications by first identifying invariants and then checking them, using the NuSMV model checker, against a Kripke structure representation. The method is applied to a basic class of P systems with transformation and communication rules using either maximal parallelism or asynchronous rewriting strategy and for a special variant of P systems with electrical charges, but without active membranes.

[1]  Marian Gheorghe,et al.  Test generation from P systems using model checking , 2010, J. Log. Algebraic Methods Program..

[2]  Florent Jacquemard,et al.  An Analysis of a Public Key Protocol with Membranes , 2005 .

[3]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[4]  Andrew Hinton,et al.  PRISM: A Tool for Automatic Verification of Probabilistic Systems , 2006, TACAS.

[5]  Marian Gheorghe,et al.  Testing Non-deterministic Stream X-machine Models and P systems , 2008, MeCBIC.

[6]  Gheorghe Stefanescu,et al.  Defining and Executing P Systems with Structured Data in K , 2009, Workshop on Membrane Computing.

[7]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[8]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[9]  Jerzy Tiuryn,et al.  Logics of Programs , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[10]  Radu Mateescu,et al.  Temporal logic patterns for querying dynamic models of cellular interaction networks , 2008, ECCB.

[11]  George Eleftherakis,et al.  Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece, June 25-28, 2007 Revised Selected and Invited Papers , 2007, Workshop on Membrane Computing.

[12]  David Corne,et al.  Membrane Computing - 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31, 2008, Revised Selected and Invited Papers , 2009, Workshop on Membrane Computing.

[13]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[14]  Vincenzo Manca,et al.  Predator-prey dynamics in P systems ruled by metabolic algorithm , 2008, Biosyst..

[15]  Marian Gheorghe,et al.  A Hybrid Approach to Modeling Biological Systems , 2007, Workshop on Membrane Computing.

[16]  Gabriel Ciobanu,et al.  A rewriting logic framework for operational semantics of membrane systems , 2007, Theor. Comput. Sci..

[17]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[18]  Gheorghe Paun,et al.  Applications of Membrane Computing (Natural Computing Series) , 2005 .

[19]  Marian Gheorghe,et al.  On Testing P Systems , 2008, Workshop on Membrane Computing.

[20]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[21]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[22]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[23]  Oscar H. Ibarra,et al.  On the Decidability of Model-Checking for P Systems , 2006, J. Autom. Lang. Comb..

[24]  Maciej Koutny,et al.  Petri Nets and Membrane Computing , 2008 .

[25]  Amir Pnueli The Temporal Semantics of Concurrent Programs , 1981, Theor. Comput. Sci..