Fiber-optic nonlinear wavelength converter for adaptive femtosecond biophotonics

We develop a tunable and reliable accessory for femtosecond ytterbium fiber chirped pulse amplifiers, termed as fiber-optic nonlinear wavelength converter (FNWC), as an adaptive optical source for femtosecond biophotonics. This accessory embowers the laser to produce fiber delivered ~20 nJ pulses with central wavelength across 950-1150 nm, repetition rate across 1-10 MHz, and pulse width across 40-400 fs. The key enabling feature is the surprising suppression of the long-term fiber photodamage in coherent supercontinuum generation using a photonic crystal fiber with large-pitch small-hole lattice. The corresponding integrated laser may widen the access to tunable ultrafast laser technology in biology and medicine.

[1]  Eric J. Chaney,et al.  Simultaneous two-photon activation and imaging of neural activity based on spectral–temporal modulation of supercontinuum light , 2020, Neurophotonics.

[2]  F. Amrani,et al.  Low-loss single-mode hybrid-lattice hollow-core photonic-crystal fibre , 2020, Light, science & applications.

[3]  Valentina Emiliani,et al.  Scanless two-photon excitation with temporal focusing , 2020, Nature Methods.

[4]  Michael Wahl,et al.  Photon arrival time tagging with many channels, sub-nanosecond deadtime, very high throughput, and fiber optic remote synchronization. , 2020, The Review of scientific instruments.

[5]  Janet E. Sorrells,et al.  Label-free visualization and characterization of extracellular vesicles in breast cancer , 2019, Proceedings of the National Academy of Sciences.

[6]  K. Charan,et al.  An adaptive excitation source for high speed multiphoton microscopy , 2019, Nature Methods.

[7]  Angelika Unterhuber,et al.  Ultrashort pulse Kagome hollow-core photonic crystal fiber delivery for nonlinear optical imaging. , 2019, Optics letters.

[8]  Yi Sun,et al.  Slide-free virtual histochemistry (Part I): development via nonlinear optics. , 2018, Biomedical optics express.

[9]  K. Charan,et al.  Investigation of the long wavelength limit of soliton self-frequency shift in a silica fiber. , 2018, Optics express.

[10]  S. Boppart,et al.  Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy , 2018, Nature Communications.

[11]  Charles P. Lin,et al.  Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy. , 2018, Biomedical optics express.

[12]  Claire Lefort,et al.  A review of biomedical multiphoton microscopy and its laser sources , 2017 .

[13]  Haohua Tu,et al.  Coherent control of an opsin in living brain tissue , 2017, Nature Physics.

[14]  A. Tünnermann,et al.  Modal content measurements (S2) of negative curvature hollow-core photonic crystal fibers. , 2017, Optics express.

[15]  Wei Liu,et al.  Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach. , 2016, Optics express.

[16]  Stephen A. Boppart,et al.  Stain-free histopathology by programmable supercontinuum pulses , 2016, Nature Photonics.

[17]  Delong Zhang,et al.  Coherent Raman Scattering Microscopy in Biology and Medicine. , 2015, Annual review of biomedical engineering.

[18]  Norbert Koop,et al.  Intravital autofluorescence 2-photon microscopy of murine intestinal mucosa with ultra-broadband femtosecond laser pulse excitation: image quality, photodamage, and inflammation , 2015, Journal of biomedical optics.

[19]  S. Boppart,et al.  Suppressing Short-Term Polarization Noise and Related Spectral Decoherence in All-Normal Dispersion Fiber Supercontinuum Generation , 2015, Journal of Lightwave Technology.

[20]  R. Bartels,et al.  Nearly transform-limited sub-20-fs pulses at 1065  nm and >10  nJ enabled by a flat field ultrafast pulse shaper. , 2015, Optics letters.

[21]  Frank W. Wise,et al.  Recent advances in fibre lasers for nonlinear microscopy , 2013, Nature Photonics.

[22]  Dongrong Xu,et al.  Review of spectral imaging technology in biomedical engineering: achievements and challenges , 2013, Journal of biomedical optics.

[23]  Haohua Tu,et al.  Coherent fiber supercontinuum for biophotonics , 2013, Laser & photonics reviews.

[24]  Xiaoming Liu,et al.  Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser , 2012, Optics express.

[25]  W. Wadsworth,et al.  Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. , 2011, Optics express.

[26]  Stephen A. Boppart,et al.  Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources , 2010, Optics express.

[27]  Daniel Day,et al.  Femtosecond Biophotonics: Core Technology and Applications , 2010 .

[28]  Khanh Kieu,et al.  Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber. , 2010, Optics letters.

[29]  M. Baker Laser tricks without labels , 2010, Nature Methods.

[30]  Karsten König,et al.  Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis , 2009, Experimental dermatology.

[31]  Daniel L Marks,et al.  Emergence of self-organized long-period fiber gratings in supercontinuum-generating optical fibers. , 2009, Optics letters.

[32]  Dmitry Turchinovich,et al.  Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression. , 2008, Optics express.

[33]  Karsten König,et al.  Clinical multiphoton tomography , 2008, Journal of biophotonics.

[34]  S. Boppart,et al.  Photoscattering effect in supercontinuum-generating photonic crystal fiber. , 2008, Applied physics letters.

[35]  S. Boppart,et al.  Localized waveguide formation in germanosilicate fiber transmitting femtosecond IR pulses. , 2008, Journal of the Optical Society of America. B, Optical physics.

[36]  Wei Jin,et al.  Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect , 2007, Journal of Lightwave Technology.

[37]  J. Jensen,et al.  Photonic crystal fiber long-period gratings for biochemical sensing. , 2006, Optics express.

[38]  J. Rothhardt,et al.  Extended single-mode photonic crystal fiber lasers. , 2006, Optics express.

[39]  Marcos Dantus,et al.  Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses , 2006 .

[40]  A. Vogel,et al.  Mechanisms of femtosecond laser nanosurgery of cells and tissues , 2005 .

[41]  J. Taylor,et al.  High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping. , 2005, Optics express.

[42]  Enrico Gratton,et al.  Mitigating thermal mechanical damage potential during two-photon dermal imaging. , 2004, Journal of biomedical optics.

[43]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[44]  W. Webb,et al.  Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Silvestri,et al.  Ultrafast optical parametric amplifiers , 2003 .

[46]  E. Neher,et al.  Highly nonlinear photodamage in two-photon fluorescence microscopy. , 2001, Biophysical journal.

[47]  K J Halbhuber,et al.  Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes. , 1999, Optics letters.

[48]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[49]  M K Reed,et al.  Widely tunable femtosecond optical parametric amplifier at 250 kHz with a Ti:sapphire regenerative amplifier. , 1994, Optics letters.

[50]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[51]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[52]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[53]  A. Demaria,et al.  Self Mode-Locking of Lasers with Saturable Absorbers , 1966 .

[54]  M. Daneel,et al.  Achievements and Challenges , 2017 .

[55]  J. Klein,et al.  Taking Multiphoton Imaging to New Depths , 2011 .

[56]  J. Lichtman,et al.  Fluorescence microscopy , 2005 .

[57]  A. M. Weinera Femtosecond pulse shaping using spatial light modulators , 2000 .

[58]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[59]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[60]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .