Missing data imputation by utilizing information within incomplete instances
暂无分享,去创建一个
[1] Jun Shao,et al. Jackknife Variance Estimation for Nearest-Neighbor Imputation , 2001 .
[2] Yang C. Yuan,et al. Multiple Imputation for Missing Data: Concepts and New Development , 2000 .
[3] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[4] Martti Juhola,et al. Treatment of missing data values in a neural network based decision support system for acute abdominal pain , 1998, Artif. Intell. Medicine.
[5] Chengqi Zhang,et al. Missing Value Imputation Based on Data Clustering , 2008, Trans. Comput. Sci..
[6] Paola Sebastiani,et al. c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Robust Learning with Missing Data , 2022 .
[7] Tariq Samad,et al. Imputation of Missing Data in Industrial Databases , 1999, Applied Intelligence.
[8] Shichao Zhang,et al. Shell-neighbor method and its application in missing data imputation , 2011, Applied Intelligence.
[9] Gustavo E. A. P. A. Batista,et al. An analysis of four missing data treatment methods for supervised learning , 2003, Appl. Artif. Intell..
[10] S. S. Wilks. Moments and Distributions of Estimates of Population Parameters from Fragmentary Samples , 1932 .
[11] Zili Zhang,et al. Missing Value Estimation for Mixed-Attribute Data Sets , 2011, IEEE Transactions on Knowledge and Data Engineering.
[12] Chengqi Zhang,et al. POP algorithm: Kernel-based imputation to treat missing values in knowledge discovery from databases , 2009, Expert Syst. Appl..
[13] Harry Shum,et al. Principal Component Analysis with Missing Data and Its Application to Polyhedral Object Modeling , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[14] G. H. Gessert. Handling missing data by using stored truth values , 1991, SGMD.
[15] Long Quan,et al. Minimal Projective Reconstruction Including Missing Data , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[16] M. Aldenderfer,et al. Cluster Analysis. Sage University Paper Series On Quantitative Applications in the Social Sciences 07-044 , 1984 .
[17] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[18] Ronald K. Pearson,et al. Mining imperfect data - dealing with contamination and incomplete records , 2005 .
[19] Shichao Zhang,et al. Parimputation: From Imputation and Null-Imputation to Partially Imputation , 2008, IEEE Intell. Informatics Bull..
[20] J. N. K. Rao,et al. Empirical likelihood-based inference under imputation for missing response data , 2002 .
[21] D. Rubin,et al. Statistical Analysis with Missing Data. , 1989 .
[22] Robert P. Goldman,et al. Imputation of Missing Data Using Machine Learning Techniques , 1996, KDD.
[23] Xiaofeng Zhu,et al. NIIA: Nonparametric Iterative Imputation Algorithm , 2008, PRICAI.
[24] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[25] Miroslaw Pawlak,et al. Kernel classification rules from missing data , 1993, IEEE Trans. Inf. Theory.
[26] Rich Caruana,et al. A Non-Parametric EM-Style Algorithm for Imputing Missing Values , 2001, AISTATS.
[27] J. Ross Quinlan,et al. Unknown Attribute Values in Induction , 1989, ML.