Skyscraper polytopes and realizations of plane triangulations

Abstract We give a new proof of Steinitz's classical theorem in the case of plane triangulations, which allows us to obtain a new general bound on the grid size of the simplicial polytope realizing a given triangulation, subexponential in a number of special cases. Formally, we prove that every plane triangulation G with n vertices can be embedded in R 2 in such a way that it is the vertical projection of a convex polyhedral surface. We show that the vertices of this surface may be placed in a 4 n 3 × 8 n 5 × ζ ( n ) integer grid, where ζ ( n ) ≤ ( 500 n 8 ) τ ( G ) and τ ( G ) denotes the shedding diameter of G , a quantity defined in the paper.

[1]  André Schulz Drawing 3-Polytopes with Good Vertex Resolution , 2011, J. Graph Algorithms Appl..

[2]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[3]  In-kyeong Choi On straight line representations of random planar graphs , 1992 .

[4]  Marc Noy,et al.  On the Diameter of Random Planar Graphs , 2012, Combinatorics, Probability and Computing.

[5]  Xin He,et al.  Optimal st -Orientations for Plane Triangulations , 2007, AAIM.

[6]  Erik D. Demaine,et al.  Embedding Stacked Polytopes on a Polynomial-Size Grid , 2011, SODA '11.

[7]  Xin He,et al.  Nearly Optimal Visibility Representations of Plane Graphs , 2006, ICALP.

[8]  Emile E. Anclin An upper bound for the number of planar lattice triangulations , 2003, J. Comb. Theory, Ser. A.

[9]  Xin He,et al.  Compact visibility representation of 4-connected plane graphs , 2012, Theor. Comput. Sci..

[10]  Emo Welzl,et al.  The Number of Triangulations on Planar Point Sets , 2006, GD.

[11]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[12]  W. T. Tutte How to Draw a Graph , 1963 .

[13]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[14]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .

[15]  J. Scott Provan,et al.  Decompositions of Simplicial Complexes Related to Diameters of Convex Polyhedra , 1980, Math. Oper. Res..

[16]  Kevin Buchin,et al.  On the Number of Spanning Trees a Planar Graph Can Have , 2009, ESA.

[17]  Imre Bárány,et al.  On the number of convex lattice polytopes , 1992 .

[18]  Jesús A. De Loera,et al.  Triangulations : Structures for Applications and Algorithms , 2010 .

[19]  Michael T. Goodrich,et al.  On the Complexity of Optimization Problems for 3-dimensional Convex Polyhedra and Decision Trees , 1997, Comput. Geom..

[20]  Robert E. Tarjan,et al.  Rectilinear planar layouts and bipolar orientations of planar graphs , 1986, Discret. Comput. Geom..

[21]  S POLYTOPE,et al.  On the Number of Convex Lattice Polytopes , 2005 .

[22]  Gnter Rote,et al.  The number of spanning trees in a planar graph , 2005 .

[23]  G. Ziegler Lectures on Polytopes , 1994 .

[24]  Ôôöøøøøóò Óó,et al.  Strictly Convex Drawings of Planar Graphs , 2022 .

[25]  G. Ziegler Convex Polytopes: Extremal Constructions and f -Vector Shapes , 2004, math/0411400.

[26]  Günter Rote,et al.  Small Grid Embeddings of 3-Polytopes , 2011, Discret. Comput. Geom..

[27]  Xin He,et al.  Improved visibility representation of plane graphs , 2005, Comput. Geom..

[28]  Volker Kaibel,et al.  Counting lattice triangulations , 2002 .

[29]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[30]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[31]  Gunter M. Ziegler,et al.  Realization spaces of 4-polytopes are universal , 1995 .

[32]  S. Wilson,et al.  Embeddings of Polytopes and Polyhedral Complexes , 2012 .