TALYS: modeling of nuclear reactions

[1]  N. Matsuda,et al.  Japanese evaluated nuclear data library version 5: JENDL-5 , 2023, Journal of Nuclear Science and Technology.

[2]  A. Zilges,et al.  Photonuclear reactions—From basic research to applications , 2021, Progress in Particle and Nuclear Physics.

[3]  F. Kondev,et al.  The NUBASE2020 evaluation of nuclear physics properties , 2021, Chinese Physics C.

[4]  S. Goriely,et al.  Shell-model based study of the direct capture in neutron-rich nuclei , 2020, The European Physical Journal A.

[5]  T. Kawano Unified description of the coupled-channels and statistical Hauser-Feshbach nuclear reaction theories for low energy neutron incident reactions , 2020, 2009.12736.

[6]  C. J. Díez,et al.  The joint evaluated fission and fusion nuclear data library, JEFF-3.3 , 2020, The European Physical Journal A.

[7]  M. Arnould,et al.  Astronuclear Physics: A tale of the atomic nuclei in the skies , 2020, Progress in Particle and Nuclear Physics.

[8]  Y. S. Cho,et al.  Reference database for photon strength functions , 2019, The European Physical Journal A.

[9]  Y. S. Cho,et al.  IAEA Photonuclear Data Library 2019 , 2019, 1908.00471.

[10]  F. M. Nortier,et al.  Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters , 2018, Journal of Radioanalytical and Nuclear Chemistry.

[11]  R. Capote,et al.  Giant dipole resonance parameters of ground-state photoabsorption: Experimental values with uncertainties , 2018, Atomic Data and Nuclear Data Tables.

[12]  T. Kawano,et al.  235U(n, f) Independent fission product yield and isomeric ratio calculated with the statistical Hauser–Feshbach theory , 2018, Journal of Nuclear Science and Technology.

[13]  R. Q. Wright,et al.  ENDF/B-VIII.0: The 8 th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data , 2018 .

[14]  David A. Brown,et al.  ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files , 2018 .

[15]  K. Sieja,et al.  Low energy dipole strength from large scale shell model calculations , 2017 .

[16]  Arjan J. Koning,et al.  Radiative neutron capture: Hauser Feshbach vs.statistical resonances , 2017 .

[17]  S. Goriely,et al.  The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model , 2016 .

[18]  T. Rauscher,et al.  The Karlsruhe Astrophysical Database of Nucleosynthesis in Stars Project - Status and Prospects , 2014, 1408.3688.

[19]  B. Pritychenko,et al.  Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC) , 2014, 2002.07114.

[20]  J. Meng,et al.  Surface diffuseness correction in global mass formula , 2014, 1405.2616.

[21]  T. Kawano,et al.  Numerical Simulations for Low Energy Nuclear Reactions to Validate Statistical Models , 2014 .

[22]  A. Koning,et al.  Extension of TALYS to 1 GeV , 2014 .

[23]  A. Tonchev,et al.  Constraining nuclear photon strength functions by the decay properties of photo-excited states , 2013 .

[24]  A. Zilges,et al.  Experimental studies of the Pygmy Dipole Resonance , 2013 .

[25]  S. Kailas,et al.  RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations , 2009 .

[26]  Arjan J. Koning,et al.  Towards sustainable nuclear energy: Putting nuclear physics to work , 2008 .

[27]  Arjan J. Koning,et al.  Global and local level density models , 2008 .

[28]  A. J. Koning,et al.  Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications , 2008, 0806.2239.

[29]  J. Quesada,et al.  A Global Dispersive Coupled-Channel Optical Model Potential for Actinides , 2008 .

[30]  M. W. Herman,et al.  EMPIRE: Nuclear Reaction Model Code System for Data Evaluation , 2007 .

[31]  Stéphane Goriely,et al.  The isovector imaginary neutron potential: A key ingredient for the r-process nucleosynthesis , 2007 .

[32]  H. Utsunomiya,et al.  Measurements of the 152Srn(γ,n) Cross Section with Laser-Compton Scattering γ Rays and the Photon Difference Method , 2007 .

[33]  Arjan J. Koning,et al.  Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications , 2006 .

[34]  M. Herman,et al.  Assessment of Approximate Methods for Width Fluctuation Corrections , 2005 .

[35]  Arjan J. Koning,et al.  A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential , 2004 .

[36]  Richard B. Firestone,et al.  The Evaluated Gamma-ray Activation File (EGAF) * , 2004 .

[37]  S. Goriely,et al.  Microscopic HFB+QRPA predictions of dipole strength for astrophysics applications , 2003, nucl-th/0306005.

[38]  P. Descouvemont Cluster models in nuclear astrophysics , 2002 .

[39]  F. Thielemann,et al.  Tables of nuclear cross sections and reaction rates : An addendum to the paper "Astrophysical reaction rates from statistical model calculations" , 2001, nucl-th/0104003.

[40]  Yutaka Nakajima,et al.  Fermi-Gas Model Parametrization of Nuclear Level Density. , 1994 .

[41]  M. Herman,et al.  Semi-empirical determination of the shell correction temperature and spin dependence by means of nuclear fission , 1994 .

[42]  J. M. Akkermans,et al.  Randomness in multi-step direct reactions , 1991 .

[43]  Nils Olsson,et al.  Neutron elastic and inelastic scattering from Mg, Si, S, Ca, Cr, Fe and Ni AT En = 21.6 MeV , 1990 .

[44]  Ian J. Thompson,et al.  Coupled reaction channels calculations in nuclear physics , 1988 .

[45]  C. Mahaux,et al.  Causality and the threshold anomaly of the nucleus-nucleus potential , 1986 .

[46]  J. Verbaarschot,et al.  Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering , 1985 .

[47]  H. Feldmeier,et al.  Level density of a Fermi gas with pairing interactions , 1985 .

[48]  H. Gruppelaar,et al.  Analysis of continuum gamma-ray emission in precompound-decay reactions , 1985 .

[49]  A. Jensen,et al.  Energy dependence of the rotational enhancement factor in the level density , 1983 .

[50]  G. Gurevich,et al.  Total nuclear photoabsorption cross sections in the region 150 < A < 190 , 1981 .

[51]  P. Moldauer,et al.  Statistics and the average cross section , 1980 .

[52]  J. W. Tepel,et al.  Direct reactions and Hauser--Feshbach theory , 1975 .

[53]  J. W. Tepel,et al.  Hauser-Feshbach formulas for medium and strong absorption , 1974 .

[54]  W. Swiatecki,et al.  Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. II , 1974 .

[55]  H. Vonach,et al.  Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250 , 1973 .

[56]  M. Blann,et al.  The pre-equilibrium statistical model: Description of the nuclear equilibration process and parameterization of the model , 1971 .

[57]  H. Baba A shell-model nuclear level density , 1970 .

[58]  A. G. W. Cameron,et al.  A COMPOSITE NUCLEAR-LEVEL DENSITY FORMULA WITH SHELL CORRECTIONS , 1965 .

[59]  T. Ericson The statistical model and nuclear level densities , 1960 .

[60]  Shigueo Watanabe,et al.  High energy scattering of deuterons by complex nuclei , 1958 .

[61]  D. Brink,et al.  Individual particle and collective aspects of the nuclear photoeffect , 1957 .

[62]  F. Kondev,et al.  The AME 2020 atomic mass evaluation (II). Tables, graphs and references , 2021, Chinese Physics C.

[63]  P. Archier,et al.  CONRAD – a code for nuclear data modeling and evaluation , 2021, EPJ Nuclear Sciences & Technologies.

[64]  O. Iwamoto,et al.  Recent progress of a code system DEURACS toward deuteron nuclear data evaluation , 2020, EPJ Web of Conferences.

[65]  A. Koning,et al.  A Statistical Analysis of Evaluated Neutron Resonances with TARES for JEFF-3.3, JENDL-4.0, ENDF/B-VIII.0 and TENDL-2019 , 2020 .

[66]  Arjan J. Koning,et al.  TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology , 2019, Nuclear Data Sheets.

[67]  Nobuyuki Iwamoto,et al.  The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions , 2016 .

[68]  P. Romain,et al.  Bruyères-le-Châtel Neutron Evaluations of Actinides with the TALYS Code: The Fission Channel , 2016 .

[69]  B. Morillon,et al.  Triple-humped fission barrier model for a new 238U neutron cross-section evaluation and first validations , 2005 .

[70]  G. Stöcklin,et al.  Excitation functions of proton induced nuclear reactions on natural tellurium and enriched 123Te: Production of 123I via the 123Te(p, n)123I-process at a low-energy cyclotron , 1989 .

[71]  K. Kravvaris,et al.  YAHFC: A Code Framework to Model Nuclear Reactions and Estimate Correlated Uncertainties , 2022 .