An upper bound for the crossing number of augmented cubes
暂无分享,去创建一个
Guoqing Wang | Yuansheng Yang | Xuezhi Yang | Wenping Zheng | Haoli Wang | Guoqing Wang | Yuansheng Yang | Haoli Wang | Wenping Zheng | Xuezhi Yang
[1] Jun-Ming Xu,et al. Fault-tolerant pancyclicity of augmented cubes , 2007, Inf. Process. Lett..
[2] L. Faria,et al. An improved upper bound on the crossing number of the hypercube , 2008 .
[3] Lowell W. Beineke,et al. The crossing number of C3 × Cn , 1978, J. Comb. Theory, Ser. B.
[4] Tom Madej,et al. Bounds for the crossing number of the N-cube , 1991, J. Graph Theory.
[5] Sun-Yuan Hsieh,et al. Conditional Diagnosability of Augmented Cubes under the PMC Model , 2012, IEEE Transactions on Dependable and Secure Computing.
[6] Ondrej Sýkora,et al. On crossing numbers of hypercubes and cube connected cycles , 1993, BIT.
[7] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[8] Sun-Yuan Hsieh,et al. Conditional edge-fault Hamiltonicity of augmented cubes , 2010, Inf. Sci..
[9] Frank Thomson Leighton,et al. A Framework for Solving VLSI Graph Layout Problems , 1983, J. Comput. Syst. Sci..
[10] Jun-Ming Xu,et al. The forwarding indices of augmented cubes , 2007, Inf. Process. Lett..
[11] Dharma P. Agrawal,et al. Generalized Hypercube and Hyperbus Structures for a Computer Network , 1984, IEEE Transactions on Computers.
[12] Jimmy J. M. Tan,et al. Fault hamiltonicity of augmented cubes , 2005, Parallel Comput..
[13] Sheshayya A. Choudum,et al. Augmented cubes , 2002, Networks.
[14] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[15] Sun-Yuan Hsieh,et al. Strong Diagnosability and Conditional Diagnosability of Augmented Cubes Under the Comparison Diagnosis Model , 2012, IEEE Transactions on Reliability.
[16] Shi-Jinn Horng,et al. Geodesic-pancyclicity and fault-tolerant panconnectivity of augmented cubes , 2009, Appl. Math. Comput..
[17] Jimmy J. M. Tan,et al. Embedding Hamiltonian paths in augmented cubes with a required vertex in a fixed position , 2009, Comput. Math. Appl..
[18] David S. Johnson,et al. Crossing Number is NP-Complete , 1983 .
[19] Pao-Lien Lai,et al. Geodesic pancyclicity and balanced pancyclicity of Augmented cubes , 2007, Inf. Process. Lett..
[20] Shengjun Pan,et al. The crossing number of K11 is 100 , 2007, J. Graph Theory.
[21] Yuansheng Yang,et al. The crossing numbers of generalized Petersen graphs with small order , 2009, Discret. Appl. Math..
[22] P. Erdös,et al. Crossing Number Problems , 1973 .
[23] Sun-Yuan Hsieh,et al. Cycle embedding of augmented cubes , 2007, Appl. Math. Comput..
[24] F. Thomas Leighton,et al. Complexity Issues in VLSI , 1983 .
[25] R. Bruce Richter,et al. The crossing number of c4 × c4 , 1995, J. Graph Theory.
[26] W. T. Tutte. Toward a theory of crossing numbers , 1970 .
[27] Celina M. H. de Figueiredo,et al. An Improved Upper Bound on the Crossing Number of the Hypercube , 2003, WG.
[29] Paul Turán,et al. A note of welcome , 1977, J. Graph Theory.
[30] Frank Thomson Leighton. Introduction to parallel algorithms and architectures: arrays , 1992 .
[31] Frank Thomson Leighton,et al. New lower bound techniques for VLSI , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[32] Martin Skoviera,et al. ON EGGLETON AND GUY'S CONJECTURED UPPER BOUND FOR THE CROSSING NUMBER OF THE n-CUBE , 2000 .
[33] Gelasio Salazar. On the crossing numbers of loop networks and generalized Petersen graphs , 2005, Discret. Math..
[34] Carsten Thomassen,et al. Intersections of curve systems and the crossing number ofC5×C5 , 1995, Discret. Comput. Geom..
[35] Jun-Ming Xu,et al. Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes , 2007, Parallel Comput..