Tube diameter and wave frequency limitations when using the electro magnetic surface wave in the m=1 (dipolar) mode to sustain a plasma column

An exhaustive experimental investigation of the conditions required to sustain a plasma column through the propagation of the m=1 mode surface wave has been conducted. It reveals that, given a discharge tube radius a, there corresponds a minimum frequency value fm below which the discharge cannot be achieved; conversely, for a given operating frequency f, the tube radius must exceed some minimum value am for the plasma to be sustained. These minimum conditions required to obtain the discharge are observed to obey a scaling law of the form (fa)m≂const., where the constant is independent of the gas nature and pressure. Theoretically, the dispersion equation of the m=1 mode wave shows no low‐frequency cutoff. However, it is found that the specific dependence of the wave attenuation coefficient on the frequency and on the tube diameter can ultimately account for the observed limitations when the wave is used to sustain a plasma. A discharge stability criterion is proposed that recovers the observed scaling la...

[1]  A. Durandet,et al.  Investigation of a plasma source sustained by an electromagnetic surface wave at 2.45 GHz under free-fall regime , 1989 .

[2]  J. Michau,et al.  Design and characteristics of SIPPI, an ion source for a long‐distance SIMS analysis of the Phobos surface , 1988 .

[3]  M. Moisan,et al.  Phase sensitive methods to determine the wavelength of electromagnetic waves in lossy nonuniform media: The case of surface waves along plasma columns , 1988 .

[4]  M. Moisan,et al.  The similarity laws for the maintenance field and the absorbed power per electron in low-pressure surface wave produced plasmas and their extension to HF plasmas in general , 1988 .

[5]  M. Moisan,et al.  Influence of the applied field frequency (27–2450 MHz) in high‐frequency sustained plasmas used to etch polyimide , 1988 .

[6]  A. Ricard,et al.  Production of metastable and resonant atoms in rare-gas (He, Ne Ar) radio-frequency and microwave-sustained discharges , 1988 .

[7]  G. Hieftje,et al.  A Low-Power Surfatron Source for the Atomic-Emission-Spectrometric Detection of Nonmetals in Aqueous Solution , 1988 .

[8]  S. Pasquiers,et al.  Influence of the radial electron density profile on the determination of the characteristics of surface-wave-produced discharges , 1988 .

[9]  M. Moisan,et al.  Fundamental properties of radiofrequency and microwave surface-wave induced plasmas , 1988 .

[10]  M. Chaker,et al.  The waveguide surfatron: a high power surface-wave launcher to sustain large-diameter dense plasma columns , 1987 .

[11]  M. Moisan,et al.  New surface wave launchers for sustaining plasma columns at submicrowave frequencies (1–300 MHz) , 1987 .

[12]  G. Hieftje,et al.  Spatial Emission Properties of a Surface-Wave-Sustained Plasma (Surfatron) in Helium , 1987 .

[13]  M. Wertheimer,et al.  Comparison of microwave and lower frequency discharges for plasma polymerization , 1987 .

[14]  J. Proud,et al.  Radiative Processes in Discharge Plasmas , 1987 .

[15]  J. Mermet,et al.  Study of a microwave-induced plasma (surfatron) as a detector in capillary-column gas chromatography with reference to pesticides , 1987 .

[16]  G. Hieftje,et al.  Taming the surfatron , 1987 .

[17]  I. Zhelyazkov,et al.  Axial structure of a plasma column produced by a large‐amplitude electromagnetic surface wave , 1986 .

[18]  M. Chaker,et al.  Microwave and RF surface wave sustained discharges as plasma sources for plasma chemistry and plasma processing , 1986 .

[19]  D. Beauchemin,et al.  Spectral and Noise Characteristics of a Xenon Microwave-Induced Plasma Lamp , 1986 .

[20]  P. Venkateswarlu,et al.  High resolution study of the E(0+g) → B3Π (0+u) transition (4400-4000 Å) of I2 , 1986 .

[21]  M. Moisan,et al.  On the supply and measurement of power in microwave induced plasmas , 1986 .

[22]  S. Vukovic,et al.  Surface waves in plasmas and solids , 1986 .

[23]  M. Hatzakis,et al.  Methods of creation and effect of microwave plasmas upon the etching of polymers and silicon , 1985 .

[24]  M. Wertheimer,et al.  Amorphous silicon for photovoltaics produced by new microwave plasma-deposition techniques , 1985 .

[25]  A. Ricard,et al.  A high-frequency surface wave pumped He-Ne laser , 1985 .

[26]  M. Chaker,et al.  Large‐diameter plasma columns produced by surface waves at radio and microwave frequencies , 1985 .

[27]  S. Krimm,et al.  Raman and normal mode studies of the polypeptide chain conformations in crystalline magnesium and calcium poly(l-glutamate)s , 1985 .

[28]  A. Shivarova,et al.  Slow ionising high-frequency electromagnetic wave along a thin plasma column , 1984 .

[29]  R. Pantel,et al.  A Waveguide-Based Launcher to Sustain Long Plasma Columns through the Propagation of an Electromagnetic Surface Wave , 1984, IEEE Transactions on Plasma Science.

[30]  C. Ferreira Modelling of a low-pressure plasma column sustained by a surface wave , 1983 .

[31]  I. Zhelyazkov,et al.  Propagation of a large-amplitude surface wave in a plasma column sustained by the wave , 1983 .

[32]  Z. Zakrzewski Conditions of existence and axial structure of long microwave discharges sustained by travelling waves , 1983 .

[33]  A. Trivelpiece,et al.  Experimental investigations of the propagation of surface waves along a plasma column , 1982 .

[34]  R. Pantel,et al.  Properties and applications of surface wave produced plasmas , 1982 .

[35]  G. Chevrier,et al.  Développement d'un détecteur à plasma micro-onde pour chromatographie en phase gazeuse , 1982 .

[36]  M. Chaker,et al.  Characteristics and energy balance of a plasma column sustained by a surface wave , 1982 .

[37]  J. Hubert,et al.  An assessment of an atmospheric pressure helium microwave plasma produced by a surfatron as an excitation source in atomic emission spectroscopy , 1982 .

[38]  C. Ferreira Theory of a plasma column sustained by a surface wave , 1981 .

[39]  W. E. Smith,et al.  The vibrational properties of some gold(iii)-halide complexes , 1981 .

[40]  R. Pantel,et al.  Axial electron density and wave power distributions along a plasma column sustained by the propagation of a surface microwave , 1980 .

[41]  P. Leprince,et al.  Distribution radiale de la densité électronique et de la densité des atomes excités dans une colonne de plasma produite par une onde de surface , 1980 .

[42]  G. Loncar,et al.  Present status of thin oxide films creation in a microwave plasma , 1980 .

[43]  R. Pitre,et al.  Design of a compact cw chemical HF/DF laser using a microwave discharge. , 1979, The Review of scientific instruments.

[44]  B. Kampmann Temporal Development and Properties of an Overdense Plasma Produced by High Power Microwaves in a Coaxial Discharge Device , 1979 .

[45]  R. Pantel,et al.  The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns , 1979 .

[46]  R. Pantel,et al.  Production and Applications of Microwave Surface Wave Plasma at Atmospheric Pressure , 1979 .

[47]  A. Ricard,et al.  A new microwave plasma at atmospheric pressure , 1979 .

[48]  I. Zhelyazkov,et al.  Surface waves in a homogeneous plasma sharply bounded by a dielectric , 1978 .

[49]  R. Bosisio,et al.  Comparison of two new microwave plasma sources for HF chemical lasers , 1978, IEEE Journal of Quantum Electronics.

[50]  M. Moisan,et al.  Attenuation of a surface wave in an unmagnetized RF plasma column , 1977 .

[51]  M. Brink,et al.  Konformationsanalyse einiger erythro- und threo-bromhydrin-, dibrom- und dihydroxisäuren und ihrer Methylester mittels NMR-spektroskopie , 1977 .

[52]  A. Shivarova,et al.  Surface wave propagation along a current-carrying warm plasma column , 1975 .

[53]  G. Matthieussent,et al.  Resonantly Sustained Discharges by dc Current and High‐Frequency Power , 1971 .

[54]  D. Tuma A quiet, uniform microwave gas discharge for lasers (Notes) , 1970 .

[55]  J. Taillet Resonance-Sustained Radio Frequency Discharges , 1969 .

[56]  Y. Ida,et al.  Resonance of Surface Waves on a Cylindrical Plasma Column , 1963 .

[57]  A. Bers,et al.  Waves in anisotropic plasmas , 1963 .