Integrated micro-power source based on a micro-silicon fuel cell and a micro electromechanical system hydrogen generator

Abstract Micro-power sources that are comparable to or smaller than the size of the micro-devices needing power are needed for many applications. This paper introduces an integrated millimeter scale power source based on a micro-silicon fuel cell and a MEMS hydrogen generator, with passive control. The integrated devices are fabricated from silicon wafers using conventional MEMS fabrication processes. In this design, the hydrolysis reaction of calcium hydride and water is used to generate hydrogen, and the hydrogen generation rate is controlled by a microfluidic self-regulating mechanism, which can control the hydrolysis reaction based on the load. Design, fabrication, and testing results of a prototype system are described. One of the devices can produce 90 μW for 6 h with a maximum power of 0.17 mW, and another one can produce 30 μW for 26 h with a total energy density of 100 Wh L −1 .

[1]  Jonathan V Sweedler,et al.  Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. , 2006, Lab on a chip.

[2]  R. Masel,et al.  A self-regulating hydrogen generator for micro fuel cells , 2008 .

[3]  R. Masel,et al.  Porous silicon fuel cells for micro power generation , 2007 .

[4]  Fang Hua-bin,et al.  A MEMS-Based Piezoelectric Power Generator for Low Frequency Vibration Energy Harvesting , 2006 .

[5]  Adam Heller,et al.  On the stability of the "wired" bilirubin oxidase oxygen cathode in serum. , 2006, Bioelectrochemistry.

[6]  Shelley D. Minteer,et al.  Development of a membraneless ethanol/oxygen biofuel cell , 2006 .

[7]  P. Prosini,et al.  A hydrogen refill for cellular phone , 2006 .

[8]  N. J. Dudney,et al.  Solid-state thin-film rechargeable batteries , 2005 .

[9]  K. Cowey,et al.  Portable and military fuel cells , 2004 .

[10]  M. Nathan,et al.  Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS , 2005, Journal of Microelectromechanical Systems.

[11]  W. Verstraete,et al.  Microbial fuel cells: novel biotechnology for energy generation. , 2005, Trends in biotechnology.

[12]  Jae Hyun Kim,et al.  Synthesis and Characterization of Electrochemically Prepared Ruthenium Oxide on Carbon Nanotube Film Substrate for Supercapacitor Applications , 2005 .

[13]  Mark A. Shannon,et al.  An Improved Miniature Direct Formic Acid Fuel Cell Based on Nanoporous Silicon for Portable Power Generation , 2006 .

[14]  A. Eftekhari Fabrication of 5 V lithium rechargeable micro-battery , 2004 .

[15]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[16]  Ying Liu,et al.  Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes. , 2005, Biosensors & bioelectronics.

[17]  R. Masel,et al.  Hydrogen generation from hydrides in millimeter scale reactors for micro proton exchange membrane fuel cell applications , 2008 .

[18]  Shekhar Bhansali,et al.  A micro-fluidic galvanic cell as an on-chip power source , 2003 .

[19]  Sung-Man Lee,et al.  As-deposited LiCoO2 thin film cathodes prepared by rf magnetron sputtering , 2005 .

[20]  William E. Farneth,et al.  Encapsulated laccase electrodes for fuel cell cathodes , 2005 .

[21]  Jeffrey D. Morse,et al.  Micro‐fuel cell power sources , 2007 .

[22]  Kiyoshi Kanamura,et al.  Fabrication of thin film electrodes for all solid state rechargeable lithium batteries , 2003 .

[23]  M. Nathan,et al.  Advanced materials for the 3D microbattery , 2006 .

[24]  D. Reisner,et al.  Prototype silicon micropower supply for sensors , 2006, IEEE Sensors Journal.

[25]  S. Chan,et al.  Feasibility study of hydrogen generation from sodium borohydride solution for micro fuel cell applications , 2005 .

[26]  F C Walsh,et al.  Biofuel cells and their development. , 2006, Biosensors & bioelectronics.

[27]  Youngjin Choi,et al.  Development of Bipolar Plate Stack Type Microbial Fuel Cells , 2006 .

[28]  B. Dunn,et al.  C-MEMS for the Manufacture of 3D Microbatteries , 2004 .

[29]  B. Gauthier-Manuel,et al.  A Porous Silicon‐Based Ionomer‐Free Membrane Electrode Assembly for Miniature Fuel Cells , 2006 .

[30]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[31]  S. Gold,et al.  A nanoporous silicon membrane electrode assembly for on-chip micro fuel cell applications , 2006, Journal of Microelectromechanical Systems.

[32]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[33]  Itamar Willner,et al.  Enhanced Bioelectrocatalysis Using Au-Nanoparticle/Polyaniline Hybrid Systems in Thin Films and Microstructured Rods Assembled on Electrodes , 2005 .

[34]  Aarne Halme,et al.  Direct methanol biocatalytic fuel cell--considerations of restraints on electron transfer. , 2006, Biosensors & bioelectronics.

[35]  H. Moon,et al.  Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries , 2004 .

[36]  Ulrich Schwaneberg,et al.  Making glucose oxidase fit for biofuel cell applications by directed protein evolution. , 2006, Biosensors & bioelectronics.

[37]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[38]  Otto J. Adlhart,et al.  A Small Portable Proton Exchange Membrane Fuel Cell and Hydrogen Generator for Medical Applications , 1997, ASAIO journal.

[39]  David Linden,et al.  Handbook of batteries and fuel cells , 1984 .