Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens

Whole-genome sequencing (WGS) has been vital for revealing the rapid temporal and spatial evolution of antimicrobial resistance (AMR) in bacterial pathogens. Some antimicrobial-resistant pathogens have outpaced us, with untreatable infections appearing in hospitals and the community. However, WGS has additionally provided us with enough knowledge to initiate countermeasures. Although we cannot stop bacterial adaptation, the predictability of many evolutionary processes in AMR bacteria offers us an opportunity to channel them using new control strategies. Furthermore, by using WGS for coordinating surveillance and to create a more fundamental understanding of the outcome of antimicrobial treatment and AMR mechanisms, we can use current and future antimicrobials more effectively and aim to extend their longevity.

[1]  Christiane Bouchier,et al.  Early transmissible ampicillin resistance in zoonotic Salmonella enterica serotype Typhimurium in the late 1950s: a retrospective, whole-genome sequencing study. , 2017, The Lancet. Infectious diseases.

[2]  Samuel S. Hunter,et al.  Compensatory mutations improve general permissiveness to antibiotic resistance plasmids , 2017, Nature Ecology & Evolution.

[3]  K. Holt,et al.  Multiple Genetic Mutations Associated with Polymyxin Resistance in Acinetobacter baumannii , 2015, Antimicrobial Agents and Chemotherapy.

[4]  Mark B. Schultz,et al.  Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant Acinetobacter baumannii global clone 1 , 2016, Microbial genomics.

[5]  N. Datta Transmissible drug resistance in an epidemic strain of Salmonella typhimurium , 1962, Journal of Hygiene.

[6]  Thomas Abeel,et al.  Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into emergence and spread of multidrug resistance , 2017, Nature Genetics.

[7]  A. Peleg,et al.  The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. , 2014, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[8]  D. Lewis The role of core groups in the emergence and dissemination of antimicrobial-resistant N gonorrhoeae , 2013, Sexually Transmitted Infections.

[9]  R. Kishony,et al.  Multidrug evolutionary strategies to reverse antibiotic resistance , 2016, Science.

[10]  D. W. Kim,et al.  Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe , 2012, Nature Genetics.

[11]  E. S. Anderson,et al.  Drug Resistance in Salmonella Typhimurium and its Implications* , 1968, British medical journal.

[12]  M. Holden,et al.  Genomics of Natural Populations of Staphylococcus aureus. , 2016, Annual review of microbiology.

[13]  M. L. Cohen,et al.  Drug-resistant Salmonella in the United States: an epidemiologic perspective. , 1986, Science.

[14]  Eric D. Kelsic,et al.  Spatiotemporal microbial evolution on antibiotic landscapes , 2016, Science.

[15]  E. Abraham,et al.  An Enzyme from Bacteria able to Destroy Penicillin , 1940, Nature.

[16]  K. Holt,et al.  Klebsiella pneumoniae Population Genomics and Antimicrobial-Resistant Clones. , 2016, Trends in microbiology.

[17]  A. Tomasz,et al.  Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice , 2017, Genome Biology.

[18]  K. Holt,et al.  South Asia as a Reservoir for the Global Spread of Ciprofloxacin-Resistant Shigella sonnei: A Cross-Sectional Study , 2016, bioRxiv.

[19]  M. A. Suchard,et al.  Distinguishable Epidemics of Multidrug-Resistant Salmonella Typhimurium DT104 in Different Hosts , 2013, Science.

[20]  Nicola K. Petty,et al.  Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. , 2015, The Lancet. Infectious diseases.

[21]  S. Gupte Letter: Nutritional recovery syndrome. , 1974, The New England journal of medicine.

[22]  G. Peirano,et al.  The Role of Epidemic Resistance Plasmids and International High-Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae , 2015, Clinical Microbiology Reviews.

[23]  Julian Parkhill,et al.  A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic , 2013, Genome research.

[24]  M. Unemo,et al.  Antimicrobial Resistance in Neisseria gonorrhoeae in the 21st Century: Past, Evolution, and Future , 2014, Clinical Microbiology Reviews.

[25]  J. Farrar,et al.  Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure , 2013, eLife.

[26]  C. Suetens,et al.  Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study , 2016, PLoS medicine.

[27]  Paul Turner,et al.  Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events , 2015, Nature Genetics.

[28]  Julian Parkhill,et al.  Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study , 2014, The Lancet. Infectious diseases.

[29]  B. Korber,et al.  Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of RNA polymerase , 2014, Molecular microbiology.

[30]  F. Weill,et al.  Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiological study. , 2013, The Lancet. Infectious diseases.

[31]  G. B. Golding,et al.  Antibiotic resistance is ancient , 2011, Nature.

[32]  K. Lewis Platforms for antibiotic discovery , 2013, Nature Reviews Drug Discovery.

[33]  K. Seme,et al.  The effects of antibiotic cycling and mixing on antibiotic resistance in intensive care units: a cluster-randomised crossover trial. , 2018, The Lancet. Infectious diseases.

[34]  K. Mølbak,et al.  International Salmonella Typhimurium DT104 Infections, 1992–2001 , 2005, Emerging infectious diseases.

[35]  J. Parkhill,et al.  Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion , 2017, Genome research.

[36]  Fabio Vannucci,et al.  Salmonella enterica Serotype 4,[5],12: i - in Swine in the United States Midwest An Emerging Multidrug-Resistant Clade , 2018, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[37]  E. Threlfall Epidemic salmonella typhimurium DT 104--a truly international multiresistant clone. , 2000, The Journal of antimicrobial chemotherapy.

[38]  K. Hopkins,et al.  Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain? , 2010, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[39]  Dritz Sk,et al.  Letter: Shigella enteritis venereally transmitted. , 1974 .

[40]  Jennifer L. Gardy,et al.  Towards a genomics-informed, real-time, global pathogen surveillance system , 2017, Nature Reviews Genetics.