Publishing and Consuming Semantic Views for Construction of Knowledge Graphs

The main goal of semantic integration is to provide a virtual semantic view that is semantically connected to data so that applications can have integrated access to data sources through the virtual Knowledge Graph. A semantic view can be published on a semantic portal to make it reusable for building Knowledge Graphs for different applications. This paper takes the first step towards publishing a semantic view on a semantic portal. This paper has three main contributions. First, we introduce a vocabulary for specifying semantic views. Then, we introduce a vocabulary for specification and quality assessment of Knowledge Graph. Third, we describe an approach to automatize the construction of a high-quality Knowledge Graph reusing a semantic view.

[1]  Diego Calvanese,et al.  Ontology-Based Data Access: A Survey , 2018, IJCAI.

[2]  Maria-Esther Vidal,et al.  Semantic Data Integration for Knowledge Graph Construction at Query Time , 2017, 2017 IEEE 11th International Conference on Semantic Computing (ICSC).

[3]  Christoph Lange,et al.  Luzzu—A Methodology and Framework for Linked Data Quality Assessment , 2016, JDIQ.

[4]  Olaf Hartig,et al.  Publishing and Consuming Provenance Metadata on the Web of Linked Data , 2010, IPAW.

[5]  Jens Lehmann,et al.  User-driven quality evaluation of DBpedia , 2013, I-SEMANTICS '13.

[6]  Angelo Brayner,et al.  A Fuzzy Approach for Data Quality Assessment of Linked Datasets , 2019, ICEIS.

[7]  Martin Necaský,et al.  ODCleanStore: A Framework for Managing and Providing Integrated Linked Data on the Web , 2012, WISE.

[8]  Vânia Maria Ponte Vidal,et al.  SemanticSUS: Um Portal Semântico baseado em Ontologias e Dados Interligados para Acesso, Integração e Visualização de Dados do SUS , 2019 .

[9]  Nathalie Pernelle,et al.  On Evaluating the Quality of RDF Identity Links in the LOD , 2014 .

[10]  Felix Naumann,et al.  Data Fusion – Resolving Data Conflicts for Integration , 2009 .

[11]  Christian Bizer,et al.  Quality-driven information filtering using the WIQA policy framework , 2009, J. Web Semant..

[12]  Richard Y. Wang,et al.  Information Quality (Advances in Management Information Systems) , 2005 .

[13]  Narciso Arruda Framework for Construction and Incremental Maintenance of High-Quality Linked Data Mashup , 2019, ER Workshops.

[14]  Marco A. Casanova,et al.  Specification and Incremental Maintenance of Linked Data Mashup Views , 2015, CAiSE.

[15]  Mauro Oliveira,et al.  Using Linked Data in the Data Integration for Maternal and Infant Death Risk of the SUS in the GISSA Project , 2017, WebMedia.

[16]  Jens Bleiholder,et al.  Data fusion and conflict resolution in integrated information systems , 2010 .

[17]  Diego Calvanese,et al.  Virtual Knowledge Graphs: An Overview of Systems and Use Cases , 2019, Data Intelligence.

[18]  Diane M. Strong,et al.  Beyond Accuracy: What Data Quality Means to Data Consumers , 1996, J. Manag. Inf. Syst..

[19]  Wolfram Wöß,et al.  Towards a Definition of Knowledge Graphs , 2016, SEMANTiCS.

[20]  Jens Lehmann,et al.  Assessing Linked Data Mappings Using Network Measures , 2012, ESWC.

[21]  Jens Lehmann,et al.  Quality assessment for Linked Data: A Survey , 2015, Semantic Web.

[22]  Chimezie Ogbuji,et al.  SemanticDB: A semantic Web infrastructure for clinical research and quality reporting , 2012 .

[23]  Marco A. Casanova,et al.  On Materialized sameAs Linksets , 2014, DEXA.

[24]  Robert Isele,et al.  LDIF - Linked Data Integration Framework , 2011, COLD.