Practical Kinematics for Real-Time Implementation of Continuum Robots

This paper introduces three algorithms which are essential for the practical, real-time implementation of continuum robots. Continuum robots lack the joints and links which compose traditional and high-degree-of-freedom robots, instead relying on finite actuation mechanisms to shape the robot into a smooth curve. Actuator length limits shape the configuration or joint space of continuum manipulators, introducing couplings analyzed in this paper which must be understood to make effective use of continuum robot hardware. Based on the new understanding of the configuration space uncovered, this paper then derives the workspace of continuum robots when constrained by actuator length limits. Finally, a tangle/untangle algorithm correctly computes the shape of the distal segments of multisection tendon-actuated continuum robots. These contributions are essential for effective use of a wide range of continuum robots, and have been implemented and tested on two different types of continuum robots. Results and insight gained from this implementation are presented

[1]  Mircea Ivanescu,et al.  A variable structure controller for a tentacle manipulator , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[2]  S. Hirose,et al.  Design of slim slime robot and its gait of locomotion , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[3]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[4]  Ian D. Walker,et al.  Design and Analysis of a Novel Pneumatic Manipulator , 2004 .

[5]  John Kenneth Salisbury,et al.  Preliminary design of a whole-arm manipulation system (WAMS) , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[6]  Hideyuki Tsukagoshi,et al.  Active Hose: an artificial elephant's nose with maneuverability for rescue operation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  Takeshi Aoki,et al.  Study on slime robot: development of the mobile robot prototype model using bridle bellows , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Ian D. Walker,et al.  Field trials and testing of the OctArm continuum manipulator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[9]  Ian D. Walker,et al.  A New Approach to Jacobian Formulation for a Class of Multi-Section Continuum Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  Adam Morecki,et al.  Elephant trunk type elastic manipulator - a tool for bulk and liquid materials transportation , 1999, Robotica.

[11]  Guy Immega,et al.  The KSI tentacle manipulator , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[12]  Shigeo Hirose,et al.  Moray Drive for Hyper Redundant , .

[13]  Ian D. Walker,et al.  Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots , 2003, J. Field Robotics.

[14]  Hiromi Mochiyama,et al.  Kinematics and dynamics of a cable-like hyper-flexible manipulator , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[15]  Shoichi Iikura,et al.  Development of flexible microactuator and its applications to robotic mechanisms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[16]  Quan Zhou,et al.  A 3-DOF piezohydraulic parallel micromanipulator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[17]  Nabil Simaan,et al.  Snake-Like Units Using Flexible Backbones and Actuation Redundancy for Enhanced Miniaturization , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[18]  Adam Morecki,et al.  Basics of robotics: theory and components of manipulators and robots , 1999 .

[19]  Roy Kornbluh,et al.  Electrostrictive polymer artificial muscle actuators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[20]  Shugen Ma,et al.  Development of a hyper-redundant multijoint manipulator for maintenance of nuclear reactors , 1994, Adv. Robotics.

[21]  Gregory S. Chirikjian,et al.  Hyper-redundant manipulator dynamics: a continuum approximation , 1994, Adv. Robotics.

[22]  Nicu George Bîzdoaca,et al.  Dynamic control for a tentacle manipulator with SMA actuators , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[23]  David M. Lane,et al.  The AMADEUS dextrous subsea hand: design, modeling, and sensor processing , 1999 .

[24]  Ian D. Walker,et al.  User interfaces for continuum robot arms , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Rob Buckingham,et al.  Snake arm robots , 2002 .

[26]  J. Bruce C. Davies,et al.  Continuum robots - a state of the art , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[27]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..

[28]  Shigeo Hirose,et al.  Biologically Inspired Robots , 1993 .

[29]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[30]  Ian D. Walker,et al.  Large deflection dynamics and control for planar continuum robots , 2001 .

[31]  Ian D. Walker,et al.  Design and implementation of a multi-section continuum robot: Air-Octor , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Christopher D. Rahn,et al.  Design of an artificial muscle continuum robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.