Particle Lifting Processes in Dust Devils

Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

[1]  John A. Gillies,et al.  Dust emissions from undisturbed and disturbed supply‐limited desert surfaces , 2008 .

[2]  Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms. , 2010, Physical review letters.

[3]  M. W. Reeks,et al.  Kinetic models for particle resuspension in turbulent flows: theory and measurement , 2001 .

[4]  Yaping Shao,et al.  A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment , 2016 .

[5]  Paul S. Smith,et al.  Winds at the Phoenix landing site , 2010 .

[6]  L. H. Cammeraat,et al.  Effects of rolling on wind-induced detachment thresholds of volcanic glass on Mars , 2014 .

[7]  R. Washington,et al.  Quantifying particle size and turbulent scale dependence of dust flux in the Sahara using aircraft measurements , 2014 .

[8]  H. Schlichting,et al.  Experimentelle Untersuchungen zum Rauhigkeitsproblem , 1936 .

[9]  Nilton O Renno,et al.  Electrostatics in wind-blown sand. , 2008, Physical review letters.

[10]  J. Iversen,et al.  The effect of wind speed and bed slope on sand transport , 1999 .

[11]  Michael Schulz,et al.  Global dust model intercomparison in AeroCom phase I , 2011 .

[12]  Y. Shao A model for mineral dust emission , 2001 .

[13]  G. S. Peter Castle,et al.  Generation of bipolar electric fields during industrial handling of powders , 2006 .

[14]  Mark T. Lemmon,et al.  Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra , 2003 .

[15]  A. Kamra Measurements of the electrical properties of dust storms , 1972 .

[16]  B. White,et al.  Soil Transport by Winds on Mars , 1979 .

[17]  Youhe Zhou,et al.  Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement , 2003 .

[18]  J. Kok,et al.  Does the size distribution of mineral dust aerosols depend on the wind speed at emission? , 2011 .

[19]  Robert M. Haberle,et al.  Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model , 2006 .

[20]  Alexander Smits,et al.  High–Reynolds Number Wall Turbulence , 2011 .

[21]  M. Mikami,et al.  Parameterization of size‐resolved dust emission and validation with measurements , 2011 .

[22]  W. A. Rudge Atmospheric Electrification during South African Dust Storms , 1913, Nature.

[23]  Yaping Shao,et al.  Effects of soil moisture and dried raindroplet crust on saltation and dust emission , 2008 .

[24]  S. Metzger,et al.  Micrometeorological Conditions for Dust-Devil Occurrence in the Atacama Desert , 2011 .

[25]  C. Flamant,et al.  An analysis of aeolian dust in climate models , 2014 .

[26]  Antonio Castellanos,et al.  The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders , 2005 .

[27]  J. Kok,et al.  Enhancement of the emission of mineral dust aerosols by electric forces , 2006 .

[28]  J. Kok,et al.  An improved parameterization of wind‐blown sand flux on Mars that includes the effect of hysteresis , 2010 .

[29]  R. Lorenz,et al.  Solar Panel Clearing Events, Dust Devil Tracks, and in-situ Vortex Detections on Mars. , 2015, Icarus.

[30]  Y. Shao Physics and Modelling of Wind Erosion , 2001 .

[31]  Ranjit M. Passi,et al.  Modeling dust emission caused by wind erosion , 1988 .

[32]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[33]  A. Ibrahim,et al.  Experiments and validation of a model for microparticle detachment from a surface by turbulent air flow , 2008 .

[34]  Y. Sone,et al.  Performance analysis and optimization considerations for a Knudsen compressor in transitional flow , 2002 .

[35]  N. Mahowald,et al.  The size distribution of desert dust aerosols and its impact on the Earth system , 2014 .

[36]  M. Klose,et al.  Numerical simulation of a continental-scale Saharan dust event , 2010 .

[37]  J. Kok,et al.  Basaltic sand ripples at Eagle Crater as indirect evidence for the hysteresis effect in martian saltation , 2014 .

[38]  N. Mahowald,et al.  An improved dust emission model – Part 1: Model description and comparison against measurements , 2014 .

[39]  M. Kocifaj,et al.  Dust ejection from planetary bodies by temperature gradients: Laboratory experiments , 2011, 1102.4525.

[40]  M. Klose,et al.  Large-eddy simulation of turbulent dust emission , 2013 .

[41]  M. Richardson,et al.  The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model , 2015 .

[42]  Mark R. Sims,et al.  The Beagle 2 environmental sensors: science goals and instrument description , 2004 .

[43]  D. Dunkerley,et al.  Willy-willies in the Australian landscape: The role of key meteorological variables and surface conditions in defining frequency and spatial characteristics , 2007 .

[44]  Raleigh L. Martin,et al.  Timescale dependence of aeolian sand flux observations under atmospheric turbulence , 2013 .

[45]  B. Bos,et al.  In situ measurements of particle load and transport in dust devils , 2011 .

[46]  B. Marticorena,et al.  Modeling saltation intermittency , 2013 .

[47]  K. Edgett,et al.  Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models , 2006 .

[48]  S. Lewis,et al.  The atmospheric circulation and dust activity in different orbital epochs on Mars , 2005 .

[49]  J. D. Dent,et al.  Electrostatic force on saltating sand , 1998 .

[50]  B. White,et al.  Saltation threshold on Mars - The effect of interparticle force, surface roughness, and low atmospheric density. [from wind-tunnel experiments] , 1976 .

[51]  Michael R. Raupach,et al.  Representation of land-surface processes in aeolian transport models , 2004, Environ. Model. Softw..

[52]  H. Herrmann,et al.  Bursts in discontinuous Aeolian saltation , 2014, Scientific Reports.

[53]  D. Lacks,et al.  Particle dynamics simulations of triboelectric charging in granular insulator systems , 2008 .

[54]  G. Landis,et al.  Gusev Crater, Mars: Observations of three dust devil seasons , 2010 .

[55]  Jonathan Peter Merrison,et al.  First experimental results of particle re-suspension in a low pressure wind tunnel applied to the issue of dust in fusion reactors , 2015 .

[56]  Ryuma Kawamura,et al.  Study on Sand Movement by Wind. , 1951 .

[57]  Bruno Andreotti,et al.  A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples , 2006, cond-mat/0603656.

[58]  J. E. Ungar,et al.  Steady state saltation in air , 1987 .

[59]  Stephen R. Lewis,et al.  Modeling the Martian dust cycle, 1. Representations of dust transport processes , 2002 .

[60]  M. Raupach,et al.  The effect of roughness elements on wind erosion threshold , 1993 .

[61]  Yaping Shao,et al.  Simplification of a dust emission scheme and comparison with data , 2004 .

[62]  M. Klose,et al.  Stochastic parameterization of dust emission and application to convective atmospheric conditions , 2012 .

[63]  J. Merrison,et al.  Laboratory studies of aeolian sediment transport processes on planetary surfaces , 2015 .

[64]  Kenneth Sassen Meteorology: Dusty ice clouds over Alaska , 2005, Nature.

[65]  N. Mahowald,et al.  An improved dust emission model – Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions , 2014 .

[66]  J. Businger,et al.  Case Studies of a Convective Plume and a Dust Devil , 1970 .

[67]  G. Hess,et al.  Characteristics of Dust Devils in Australia , 1990 .

[68]  F. Ferri,et al.  Dust devils as observed by Mars Pathfinder , 1999 .

[69]  Radiative cooling within illuminated layers of dust on (pre)-planetary surfaces and its effect on dust ejection , 2011 .

[70]  M. M. Stempniewicz,et al.  Model of particle resuspension in turbulent flows , 2008 .

[71]  Zhenting Wang,et al.  A theoretical note on aerodynamic lifting in dust devils , 2016 .

[72]  M. Klose Convective Turbulent Dust Emission: Process, parameterization, and relevance in the Earth system , 2014 .

[73]  G. Wurm,et al.  A MECHANISM TO PRODUCE THE SMALL DUST OBSERVED IN PROTOPLANETARY DISKS , 2011, 1111.1066.

[74]  C. Stow DUST AND SAND STORM ELECTRIFICATION , 1969 .

[75]  Jeffrey R. Johnson,et al.  Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .

[76]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[77]  W. Cornelis,et al.  A Parameterisation for the Threshold Shear Velocity to Initiate Deflation of Dry and Wet Sediment , 2004 .

[78]  A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle , 2010, Proceedings of the National Academy of Sciences.

[79]  Yaping Shao,et al.  A theory for drag partition over rough surfaces , 2008 .

[80]  W. S. Chepil,et al.  DYNAMICS OF WIND EROSION: II. INITIATION OF SOIL MOVEMENT , 1945 .

[81]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[82]  Raleigh L. Martin,et al.  Fundamental mismatches between measurements and models in aeolian sediment transport prediction: The role of small-scale variability , 2014 .

[83]  Stephane C. Alfaro,et al.  Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. , 2009 .

[84]  G. Wurm,et al.  Thermal creep‐assisted dust lifting on Mars: Wind tunnel experiments for the entrainment threshold velocity , 2015, 1508.01047.

[85]  Ronald Greeley,et al.  Dust devil sediment flux on Earth and Mars: Laboratory simulations , 2010 .

[86]  An Insolation Activated Dust Layer on Mars , 2015, 1507.05764.

[87]  M. Raupach Drag and drag partition on rough surfaces , 1992 .

[88]  A. Pathare,et al.  Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth , 2012 .

[89]  R. Lorenz,et al.  Dust devil height and spacing with relation to the martian planetary boundary layer thickness , 2015 .

[90]  A. Spiga,et al.  An assessment of the impact of local processes on dust lifting in Martian climate models , 2015 .

[91]  K. Schepanski,et al.  Numerical model simulation of the Saharan dust event of 6-11 March 2006 using the Regional Climate Model version 3 (RegCM3) , 2009 .

[92]  J. Murphy,et al.  Mars Pathfinder convective vortices: Frequency of occurrence , 2002 .

[93]  George D. Freier,et al.  The electric field of a large dust devil , 1960 .

[94]  R. Lorenz,et al.  In-situ measurement of dust devil activity at La Jornada Experimental Range, New Mexico, USA , 2015 .

[95]  G. Villanueva,et al.  HIGHLY DEPLETED ETHANE AND MILDLY DEPLETED METHANOL IN COMET 21P/GIACOBINI-ZINNER: APPLICATION OF A NEW EMPIRICAL ν2-BAND MODEL FOR CH3OH NEAR 50 K , 2013 .

[96]  M. D. Ellehoj,et al.  Convective vortices and dust devils at the Phoenix Mars mission landing site , 2010 .

[97]  M. Balme,et al.  Particle lifting at the soil‐air interface by atmospheric pressure excursions in dust devils , 2006 .

[98]  Martin C. Towner,et al.  Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60 , 2002 .

[99]  P. Claudin,et al.  On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws , 2011 .

[100]  J. Kok Planetary science: Martian sand blowing in the wind , 2012, Nature.

[101]  A. Mueller Atmospheric Boundary Layer Flows Their Structure And Measurement , 2016 .

[102]  W. S. Chepil,et al.  DYNAMICS OF WIND EROSION: III. THE TRANSPORT CAPACITY OF THE WIND , 1945 .

[103]  J. T. Jenkins,et al.  Saltating particles in a turbulent boundary layer: experiment and theory , 2009, Journal of Fluid Mechanics.

[104]  Y. Shao,et al.  A simple expression for wind erosion threshold friction velocity , 2000 .

[105]  J. Ryan,et al.  Possible dust devils, vortices on Mars , 1983 .

[106]  M. Mikami,et al.  Power law relation between size-resolved vertical dust flux and friction velocity measured in a fallow wheat field , 2014 .

[107]  S. Arya,et al.  A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice , 1975 .

[108]  Otto Chkhetiani,et al.  Dust resuspension under weak wind conditions: direct observations and model , 2011 .

[109]  José S Andrade,et al.  Giant saltation on Mars , 2008, Proceedings of the National Academy of Sciences.

[110]  Sandy Wagner,et al.  An Assessment of Dust Effects on Planetary Surface Systems to Support Exploration Requirements , 2013 .

[111]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[112]  S. Squyres,et al.  Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit , 2006 .

[113]  E. Williams,et al.  The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel , 2009 .

[114]  Richard W. Zurek,et al.  The martian dust cycle. , 1992 .

[115]  J. Finnigan,et al.  Atmospheric Boundary Layer Flows: Their Structure and Measurement , 1994 .

[116]  H. Hiesinger,et al.  First in‐situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars , 2010 .

[117]  R. Greeley,et al.  Terrestrial Analogs to Mars: East-Central Saharan Dust Devil Tracks , 2012 .

[118]  R. Greeley,et al.  Friction wind speeds in dust devils: A field study , 2003 .

[119]  R. Greeley,et al.  Dust devils in the laboratory: Effect of surface roughness on vortex dynamics , 2010 .

[120]  Floriana Esposito,et al.  The role of the atmospheric electric field in the dust‐lifting process , 2016 .

[121]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[122]  R. Wilson,et al.  Simulation of the Martian dust cycle with the GFDL Mars GCM , 2004 .

[123]  C. Heald,et al.  Toward resolution‐independent dust emissions in global models: Impacts on the seasonal and spatial distribution of dust , 2013 .

[124]  Dale A. Gillette,et al.  The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soils , 1974 .

[125]  K. Herkenhoff,et al.  Wind-driven Particle Mobility on Mars: Insights from MER Observations at , 2007 .

[126]  Hans Jürgen Herrmann,et al.  The apparent roughness of a sand surface blown by wind from an analytical model of saltation , 2011, 1111.1340.

[127]  B. Marticorena,et al.  Factors controlling threshold friction velocity in semiarid and arid areas of the United States , 1997 .

[128]  Oliver Krauss,et al.  Dust eruptions by photophoresis and solid state greenhouse effects. , 2006, Physical review letters.

[129]  J. Kok,et al.  The physics of wind-blown sand and dust , 2012, Reports on progress in physics. Physical Society.

[130]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[131]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[132]  L. Gomes,et al.  Validation of a dust production model from measurements performed in semi-arid agricultural areas of Spain and Niger , 2003 .

[133]  Yaping Shao,et al.  A new model for dust emission by saltation bombardment , 1999 .

[134]  J. Merrison Sand transport, erosion and granular electrification , 2012 .

[135]  Dale A. Gillette,et al.  Fine Particulate Emissions Due to Wind Erosion , 1977 .

[136]  Greenhouse and thermophoretic effects in dust layers: The missing link for lifting of dust on Mars , 2008 .

[137]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[138]  M. Klose,et al.  A numerical study on dust devils with implications to global dust budget estimates , 2016 .

[139]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[140]  William G. Nickling,et al.  A THEORETICAL AND WIND TUNNEL INVESTIGATION OF THE EFFECT OF CAPILLARY WATER ON THE ENTRAINMENT OF SEDIMENT BY WIND , 1989 .

[141]  Oliver Krauss,et al.  Experiments on negative photophoresis and application to the atmosphere , 2008 .

[142]  Per Nornberg,et al.  Determination of the wind induced detachment threshold for granular material on Mars using wind tunnel simulations , 2007 .

[143]  L. Gomes,et al.  Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas , 2001 .

[144]  Dust ejection from (pre-)planetary bodies by temperature gradients: radiative and heat transfer , 2010 .

[145]  G. Okin,et al.  The effect of roughness elements on wind erosion: The importance of surface shear stress distribution , 2014 .

[146]  R. Greeley,et al.  Martian dust devils: Directions of movement inferred from their tracks , 2004 .

[147]  J. Garatuza,et al.  MATADOR 2002: A pilot field experiment on convective plumes and dust devils , 2004 .

[148]  Ronald Greeley,et al.  Martian dust devils: Laboratory simulations of particle threshold , 2003 .

[149]  P. R. Owen,et al.  Saltation of uniform grains in air , 1964, Journal of Fluid Mechanics.

[150]  G. Bergametti,et al.  Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas , 1999 .

[151]  Cheryl Mckenna Neuman Effects of Temperature and Humidity upon the Entrainment of Sedimentary Particles by Wind , 2003 .

[152]  J. Hunt,et al.  Dust resuspension without saltation. , 2000, Journal of geophysical research.

[153]  M. Dunlop,et al.  A statistical study of EMIC waves observed by Cluster: 1. Wave properties , 2014, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[154]  Richard W. Zurek,et al.  Interannual variability of planet-encircling dust storms on Mars , 1993 .

[155]  P. Dupont,et al.  Scaling laws in aeolian sand transport. , 2011, Physical review letters.

[156]  P. Knippertz,et al.  Quantifying global dust devil occurrence from meteorological analyses , 2015, Geophysical research letters.

[157]  K. Herkenhoff,et al.  Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site , 2005 .

[158]  M. Lemmon,et al.  Eight-year climatology of dust optical depth on Mars , 2014, 1409.4841.

[159]  G. Wurm,et al.  FROM PLANETESIMALS TO DUST: LOW-GRAVITY EXPERIMENTS ON RECYCLING SOLIDS AT THE INNER EDGES OF PROTOPLANETARY DISKS , 2013, 1301.1874.

[160]  J. A. Åström,et al.  Statistical models of brittle fragmentation , 2006 .

[161]  Wim Cornelis,et al.  A conceptual model to predict the deflation threshold shear velocity as affected by near-surface soil water. I: Theory , 2004 .

[162]  Raupach,et al.  A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region , 1996 .

[163]  Bruce R. White,et al.  Definition and measurement of dust aeolian thresholds , 2004 .

[164]  Michael Sørensen,et al.  Vertical variation of particle speed and flux density in aeolian saltation: Measurement and modeling , 2008 .

[165]  R. Greeley,et al.  Dust devils on Earth and Mars , 2006, Oxford Research Encyclopedia of Planetary Science.

[166]  B. Bauer,et al.  Influence of averaging interval on shear velocity estimates for aeolian transport modeling , 2003 .

[167]  William G. Nickling,et al.  Dust emission and transport in Mali, West Africa , 1993 .

[168]  L. Gomes,et al.  Soil crusting on sandy soils and its influence on wind erosion , 2003 .

[169]  Gennady Ziskind,et al.  Resuspension of particulates from surfaces to turbulent flows : review and analysis , 1995 .

[170]  Ronald Greeley,et al.  Dust flux within dust devils: Preliminary laboratory simulations , 2006 .

[171]  D. Thomas,et al.  Wind as a Geological Process on Earth, Mars, Venus and Titan , 1988 .

[172]  T. M. McClelland,et al.  Dust devils at White Sands Missile Range, New Mexico: 1. Temporal and spatial distributions , 1990 .

[173]  D. Ming,et al.  Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site , 2005, Nature.

[174]  D. Gillette,et al.  Measurements of Aerosol Size Distributions and Vertical Fluxes of Aerosols on Land Subject to Wind Erosion , 1972 .

[175]  A. D. Zimon,et al.  Adhesion of dust and powder , 1969 .

[176]  R. Washington,et al.  Dust detection from ground‐based observations in the summer global dust maximum: Results from Fennec 2011 and 2012 and implications for modeling and field observations , 2015 .

[177]  Jon Wiernga Representative roughness parameters for homogeneous terrain , 1993 .

[178]  B. R. White,et al.  Saltation threshold on Earth, Mars and Venus , 1982 .

[179]  M. Klose,et al.  Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations , 2014 .

[180]  P. Sinclair,et al.  General Characteristics of Dust Devils. , 1969 .

[181]  Jeffrey R. Johnson,et al.  Dust devil vortices seen by the Mars Pathfinder Camera , 1999 .

[182]  W. Nickling Grain-Size Characteristics of Sediment Transported During Dust Storms , 1983 .

[183]  D. Gillette,et al.  A Comparison of Aerosol and Momentum Mixing in Dust Storms Using Fast-Response Instruments , 1977 .

[184]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[185]  J. Finnigan,et al.  Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy , 1996 .