The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review

Abstract A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, wetting has been studied using contact angles of drops on solids for more than 200 years, the question remains unanswered: Is wetting of a rough and chemically heterogeneous surface controlled by the interactions within the solid/liquid contact area beneath the droplet or only at the three-phase contact line? After the publications of Pease in 1945, Extrand in 1997, 2003 and Gao and McCarthy in 2007 and 2009, it was proposed that advancing, receding contact angles, and contact angle hysteresis of rough and chemically heterogeneous surfaces are determined by interactions of the liquid and the solid at the three-phase contact line alone and the interfacial area within the contact perimeter is irrelevant. As a consequence of this statement, the well-known Wenzel (1934) and Cassie (1945) equations which were derived using the contact area approach are proposed to be invalid and should be abandoned. A hot debate started in the field of surface science after 2007, between the three-phase contact line and interfacial contact area approach defenders. This paper presents a review of the published articles on contact angles and summarizes the views of the both sides. After presenting a brief history of the contact angles and their measurement methods, we discussed the basic contact angle theory and applications of contact angles on the characterization of flat, rough and micropatterned superhydrophobic surfaces. The weak and strong sides of both three-phase contact line and contact area approaches were discussed in detail and some practical conclusions were drawn.

[1]  R. Hidalgo-Álvarez,et al.  Contact angle measurements on two (wood and stone) non-ideal surfaces , 2002 .

[2]  Conyers Herring,et al.  Some Theorems on the Free Energies of Crystal Surfaces , 1951 .

[3]  Jin Zhai,et al.  Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force , 2005 .

[4]  Extrand,et al.  Contact Angles and Hysteresis on Soft Surfaces , 1996, Journal of colloid and interface science.

[5]  Z. Barkay,et al.  Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[6]  E. Bormashenko Wetting transitions on biomimetic surfaces , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  S. B. Lindström,et al.  Water drop friction on superhydrophobic surfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[8]  J. E. McNutt,et al.  Relationship of the Contact Angle to Interfacial Energies , 1959 .

[9]  Evelyn N Wang,et al.  Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[10]  H. Yasuda,et al.  Static and Dynamic Contact Angles of Water on Polymeric Surfaces , 1997 .

[11]  G McHale,et al.  Cassie and Wenzel: were they really so wrong? , 2007, Langmuir : the ACS journal of surfaces and colloids.

[12]  Abraham Marmur,et al.  From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[13]  R. Good,et al.  The effect of drop size on contact angle , 1979 .

[14]  G. McHale,et al.  DETERMINATION OF THE RECEDING CONTACT ANGLE OF SESSILE DROPS ON POLYMER SURFACES BY EVAPORATION , 1999 .

[15]  G. W. Longman,et al.  Two microscopical methods of determining the contact angles of small drops , 1967 .

[16]  P. A. Small Some factors affecting the solubility of polymers , 2007 .

[17]  A. Checco,et al.  Nonlinear dependence of the contact angle of nanodroplets on contact line curvature. , 2003, Physical review letters.

[18]  S. Moon,et al.  Superwetting of structured surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[19]  H. Erbil Surface chemistry of solid and liquid interfaces , 2006 .

[20]  Johannes G.E. Gardeniers,et al.  Absence of an evaporation-driven wetting transition on omniphobic surfaces , 2012 .

[21]  K. Seo,et al.  Validity of the equations for the contact angle on real surfaces , 2013, Korea-Australia Rheology Journal.

[22]  Extrand,et al.  An Experimental Study of Contact Angle Hysteresis , 1997, Journal of colloid and interface science.

[23]  A. Dubov,et al.  Elastic instability and contact angles on hydrophobic surfaces with periodic textures , 2012 .

[24]  Stefan Zürcher,et al.  Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[25]  B. Andreotti,et al.  Moving Contact Lines: Scales, Regimes, and Dynamical Transitions , 2013 .

[26]  H. Butt,et al.  Direct Measurement of Particle−Bubble Interactions in Aqueous Electrolyte: Dependence on Surfactant , 1998 .

[27]  Xianmin Xu,et al.  The modified Cassie’s equation and contact angle hysteresis , 2013, Colloid and Polymer Science.

[28]  M. Strobel,et al.  An Essay on Contact Angle Measurements , 2011 .

[29]  Daniel Y. Kwok,et al.  Measurements of Static and Low Rate Dynamic Contact Angles by Means of an Automated Capillary Rise Technique , 1995 .

[30]  Río,et al.  Axisymmetric Drop Shape Analysis: Computational Methods for the Measurement of Interfacial Properties from the Shape and Dimensions of Pendant and Sessile Drops. , 1997, Journal of colloid and interface science.

[31]  W. Zisman,et al.  The spreading of liquids on low-energy surfaces. II. Modified tetrafluoroethylene polymers , 1952 .

[32]  G. Jameson,et al.  Theory for the equilibrium contact angle between a gas, a liquid and a solid , 1976 .

[33]  Li-Jen Chen,et al.  Contact angle hysteresis on regular pillar-like hydrophobic surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[34]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[35]  B. Bhushan,et al.  Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces , 2008, Journal of microscopy.

[36]  L. Lee Scope and limitations of the equation of state approach for interfacial tensions , 1993 .

[37]  Driving droplet by scale effect on microstructured hydrophobic surfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[38]  Dongqing Li,et al.  Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles , 1990 .

[39]  B. Bhushan,et al.  Technique to measure contact angle of micro/nanodroplets using atomic force microscopy , 2008 .

[40]  A. Amirfazli,et al.  AUTOMATION OF THE AXISYMMETRIC DROP SHAPE ANALYSIS-DIAMETER FOR CONTACT ANGLE MEASUREMENTS , 1999 .

[41]  H. Erbil,et al.  Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[42]  H. Erbil,et al.  Determination of surface free energy components of polymers from contact angle data using nonlinear programming methods , 1988 .

[43]  A. Nietz Molecular Orientation at Surfaces of Solids. I. MEASUREMENT OF CONTACT ANGLE AND THE WORK OF ADHESION OF ORGANIC SUBSTANCES FOR WATER , 1928 .

[44]  F. He,et al.  The apparent contact angle of water droplet on the micro-structured hydrophobic surface , 2010 .

[45]  C. Extrand,et al.  Criteria for ultralyophobic surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[46]  S. Ogata,et al.  3-D thermodynamic analysis of superhydrophobic surfaces. , 2008, Journal of colloid and interface science.

[47]  Rulon E. Johnson Conflicts between Gibbsian Thermodynamics and Recent Treatments of Interfacial Energies in Solid-Liquid-Vapor , 1959 .

[48]  Z. Barkay,et al.  Contact angle hysteresis on polymer substrates established with various experimental techniques, its interpretation, and quantitative characterization. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[49]  G. Quincke Ueber die Bestimmung der Capillarconstanten von Flüssigkeiten , 1886 .

[50]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[51]  Andrew G. Glen,et al.  APPL , 2001 .

[52]  Lichao Gao,et al.  Wetting 101 degrees. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[53]  H. Erbil CALCULATION OF SPREADING PRESSURE FROM CONTACT-ANGLE DATA ON POLYMER SURFACES , 1994 .

[54]  A. Neumann,et al.  A novel strategy for determining line tension from the shape of a liquid meniscus near a stripwise heterogeneous wall , 1990 .

[55]  A. Neumann,et al.  Thermodynamics of contact angles. II. Rough solid surfaces , 1975 .

[56]  T. J. McCarthy,et al.  How Wenzel and cassie were wrong. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[57]  R. H. Dettre,et al.  Contact Angle Hysteresis. III. Study of an Idealized Heterogeneous Surface , 1964 .

[58]  D. Fischer,et al.  Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy. , 2000, Optics letters.

[59]  W. Zisman,et al.  Wettability Studies on Nylon, Polyethylene Terephthalate and Polystyrene , 1954 .

[60]  Lc Gao,et al.  Reply to "Comment on How Wenzel and Cassie Were Wrong by Gao and McCarthy" , 2007 .

[61]  Reinhard Lipowsky,et al.  Wetting morphologies at microstructured surfaces. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  S. T. Larsen,et al.  A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[63]  Neelesh A Patankar,et al.  Transition between superhydrophobic states on rough surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[64]  T. Fort,et al.  A simple method for measuring solid-liquid contact angles , 1963 .

[65]  F. E. Bartell,et al.  The Effect of Surface Roughness on Apparent Contact Angles and on Contact Angle Hysteresis. I. The system Paraffin–Water–Air , 1953 .

[66]  W. King,et al.  Visualizing contact line phenomena on microstructured superhydrophobic surfaces , 2010 .

[67]  W. Zisman,et al.  The spreading of liquids on low-energy surfaces. IV. Monolayer coatings on platinum , 1952 .

[68]  Hans-Jürgen Butt,et al.  Boundary slip in Newtonian liquids: a review of experimental studies , 2005 .

[69]  T. Cubaud,et al.  Advancing contact lines on chemically patterned surfaces. , 2004, Journal of colloid and interface science.

[70]  R. H. Dettre,et al.  Contact Angle Hysteresis. IV. Contact Angle Measurements on Heterogeneous Surfaces1 , 1965 .

[71]  N. Nguyen,et al.  The three-phase contact line shape and eccentricity effect of anisotropic wetting on hydrophobic surfaces , 2013 .

[72]  L. R. Fisher Measurement of small contact angles for sessile drops , 1979 .

[73]  Z. Barkay,et al.  Revisiting the fine structure of the triple line. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[74]  C. V. Oss,et al.  Interfacial Forces in Aqueous Media , 1994 .

[75]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[76]  A. Månsson,et al.  Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization. , 2007, Journal of colloid and interface science.

[77]  Dongqing Li,et al.  Contact angles on hydrophobic solid surfaces and their interpretation , 1992 .

[78]  Ernesto Occhiello,et al.  Knowledge about polymer surfaces from contact angle measurements , 1990 .

[79]  M. Fortes Deformation of solid surfaces due to capillary forces , 1984 .

[80]  Lee Relevance of Film Pressures to Interfacial Tension, Miscibility of Liquids, and Lewis Acid-Base Approach. , 1999, Journal of colloid and interface science.

[81]  B. Andreotti,et al.  Why is surface tension a force parallel to the interface , 2011, 1211.3854.

[82]  D. H. Bangham,et al.  Adsorption and the wettability of solid surfaces , 1937 .

[83]  A Amirfazli,et al.  The Cassie equation: how it is meant to be used. , 2012, Advances in colloid and interface science.

[84]  G. McHale,et al.  The superhydrophobicity of polymer surfaces: Recent developments , 2011 .

[85]  L. J. Bonis SURFACE ANALYSIS - "Interdisciplinary Aspects of Surface Phenomena" , 1964 .

[86]  Didem Öner,et al.  Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability , 2000 .

[87]  H. B. Eral,et al.  Contact angle hysteresis: a review of fundamentals and applications , 2013, Colloid and Polymer Science.

[88]  Neelesh A. Patankar,et al.  Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces , 2003 .

[89]  T. Ng,et al.  Drops transformed from a continuous flow on a superhydrophobic incline , 2013 .

[90]  A. Adamson,et al.  Adsorption and contact angle studies: III. Organic substances on polished polyethylene , 1979 .

[91]  Rongguang Wang,et al.  Evaluation of the wettability of metal surfaces by micro-pure water by means of atomic force microscopy , 2002 .

[92]  Ying-Song Yu,et al.  Elastic deformation of soft membrane with finite thickness induced by a sessile liquid droplet. , 2009, Journal of colloid and interface science.

[93]  A. Amirfazli,et al.  A methodology to determine the adhesion force of arbitrarily shaped drops with convex contact lines , 2013 .

[94]  M. Nagy,et al.  Do Partially Wettable Surfaces Influence the Drying Kinetics of Microliter Water Drops Beyond the Evaporation Models , 2011 .

[95]  Dongqing Li,et al.  EQUATION OF STATE FOR INTERFACIAL TENSIONS OF SOLID-LIQUID SYSTEMS , 1992 .

[96]  Chun Huh,et al.  Effects of surface roughness on wetting (theoretical) , 1977 .

[97]  N. K. Adam,et al.  Contact Angles and Work of Adhesion , 1958, Nature.

[98]  R. Xia,et al.  A new wetting mechanism based upon triple contact line pinning. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[99]  J. Andrade Surface and Interfacial Aspects of Biomedical Polymers , 1985 .

[100]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[101]  R. Good Spreading pressure and contact angle , 1975 .

[102]  A. Dupré Théorie mécanique de la chaleur , 1969 .

[103]  Y. Ikada,et al.  Comparison of different methods for contact angle measurement , 1991 .

[104]  N. Nguyen,et al.  Eccentricity effect of micropatterned surface on contact angle. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[105]  H. K. Livingston,et al.  Energy Relations of the Surfaces of Solids II. Spreading Pressure as Related to the Work of Adhesion Between a Solid and a Liquid , 1942 .

[106]  C. Extrand Contact Angles and Hysteresis on Surfaces with Chemically Heterogeneous Islands , 2003 .

[107]  E. Rideal The Physics and Chemistry of Surfaces , 1931, Nature.

[108]  Abraham Marmur,et al.  CONTACT ANGLE HYSTERESIS ON HETEROGENEOUS SMOOTH SURFACES , 1994 .

[109]  M. Shanahan Simple Theory of "Stick-Slip" Wetting Hysteresis , 1995 .

[110]  Bharat Bhushan,et al.  Fabrication and characterization of multi-level hierarchical surfaces. , 2012, Faraday discussions.

[111]  W. J. Herzberg,et al.  Relationship between contact angle and drop size , 1970 .

[112]  H. Erbil,et al.  Evaporation of pure liquid sessile and spherical suspended drops: a review. , 2012, Advances in colloid and interface science.

[113]  D. Pease The Significance of the Contact Angle in Relation to the Solid Surface , 1945 .

[114]  J. Bikerman Sliding of drops from surfaces of different roughnesses , 1950 .

[115]  Marco Rivetti,et al.  Finite size effects on textured surfaces: recovering contact angles from vagarious drop edges. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[116]  Hans-Jürgen Butt,et al.  Physics and Chemistry of Interfaces , 2003 .

[117]  F. Fowkes ATTRACTIVE FORCES AT INTERFACES , 1964 .

[118]  Lichao Gao,et al.  Contact angle hysteresis explained. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[119]  R. Good,et al.  Thermodynamics of contact angles. I. Heterogeneous solid surfaces , 1972 .

[120]  F. Fowkes,et al.  Interfacial interactions between self-associated polar liquids and squalane used to test equations for solid—liquid interfacial interactions , 1990 .

[121]  R. Good,et al.  Contact angle, wetting, and adhesion: a critical review , 1992 .

[122]  J. C. Slattery,et al.  Correlation for dynamic contact angle , 1979 .

[123]  Edward Bormashenko,et al.  The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon , 2008 .

[124]  B. A. Pethica The contact angle equilibrium , 1977 .

[125]  E. Bormashenko Why does the Cassie–Baxter equation apply? , 2008 .

[126]  A Wilhelm Neumann,et al.  Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces without use of apex coordinates. , 1983, Langmuir : the ACS journal of surfaces and colloids.

[127]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[128]  A. Adamson,et al.  Adsorption and contact angle studies , 1974 .

[129]  Roger Woodward,et al.  An evaluation of methods for contact angle measurement. , 2005, Colloids and surfaces. B, Biointerfaces.

[130]  Michael Nosonovsky,et al.  On the range of applicability of the Wenzel and Cassie equations. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[131]  Abraham Marmur,et al.  Soft contact: measurement and interpretation of contact angles. , 2006, Soft matter.

[132]  David Quéré,et al.  Slippy and sticky microtextured solids , 2003 .

[133]  Martin E. R. Shanahan,et al.  Viscoelastic effects in the spreading of liquids , 1996, Nature.

[134]  A. Nakajima,et al.  Sliding of water droplets on hydrophobic surfaces with various hydrophilic region sizes. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[135]  K. J. Mysels,et al.  A new apparatus for measurements of dynamic interfacial properties , 1974 .

[136]  H. K. Livingston Contact Angles and Adsorption on Solid Surfaces , 1944 .

[137]  H. Erbil Bioadhesion to solids: contact angle hysteresis effect , 2013, Colloid and Polymer Science.

[138]  D. H. Kaelble,et al.  Dispersion-Polar Surface Tension Properties of Organic Solids , 1970 .

[139]  Srikanth Vedantam,et al.  Effect of three-phase contact line topology on dynamic contact angles on heterogeneous surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[140]  Bharat Bhushan,et al.  Towards optimization of patterned superhydrophobic surfaces , 2007, Journal of The Royal Society Interface.

[141]  Margaret Nichols Trans , 2015, De-centering queer theory.

[142]  I. D. Morrison On the existence of an equation of state for interfacial free energies , 1989 .

[143]  F. Fowkes,et al.  Contact angles and the equilibrium spreading pressures of liquids on hydrophobic solids , 1980 .

[144]  A. Marmur Solid-Surface Characterization by Wetting , 2009 .

[145]  C. Stafford,et al.  Anisotropic wetting on tunable micro-wrinkled surfaces. , 2007, Soft matter.

[146]  Abraham Marmur,et al.  When Wenzel and Cassie are right: reconciling local and global considerations. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[147]  J. Callow,et al.  Effect of contact angle hysteresis on the removal of the sporelings of the green alga Ulva from the fouling-release coatings synthesized from polyolefin polymers , 2010, Biointerphases.

[148]  H. Erbil,et al.  Nonlinear programming methods to determine surface free energy components of polymers using harmonic mean approximation , 1988 .

[149]  A. Neumann,et al.  The dependence of contact angles on drop size and line tension , 1987 .

[150]  H. Erbil,et al.  Comments on the Energy Barrier Calculations during “Stick–Slip” Behavior of Evaporating Droplets Containing Nanoparticles , 2014 .

[151]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[152]  D. N. Staicopolus The computation of surface tension and of contact angle by the sessile-drop method , 1962 .

[153]  Haihui Ye,et al.  Environmental Scanning Electron Microscopy Study of Water in Carbon Nanopipes , 2004 .

[154]  A. Nikolov,et al.  Contact angles of thin liquid films: Interferometric determination , 1990 .

[155]  G. McHale,et al.  Analysis of shape distortions in sessile drops , 2001 .

[156]  T. J. McCarthy,et al.  An attempt to correct the faulty intuition perpetuated by the Wenzel and Cassie "laws". , 2009, Langmuir : the ACS journal of surfaces and colloids.

[157]  R. Lipowsky,et al.  Contact Angles on Heterogeneous Surfaces: A New Look at Cassie's and Wenzel's Laws , 1998, cond-mat/9809089.

[158]  G McHale,et al.  Analysis of droplet evaporation on a superhydrophobic surface. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[159]  A. Huntington The concentration of metalliferous sulphides by flotation , 1906 .

[160]  Doris M. Spori,et al.  Cassie-state wetting investigated by means of a hole-to-pillar density gradient. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[161]  Hans-Jürgen Butt,et al.  Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[162]  I. Langmuir,et al.  The Effect of Dissolved Salts on Insoluble Monolayers , 1937 .

[163]  S. Vedantam,et al.  Constitutive modeling of contact angle hysteresis. , 2008, Journal of colloid and interface science.

[164]  S. Moon,et al.  Which controls wetting? Contact line versus interfacial area: simple experiments on capillary rise. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[165]  William J. Brittain,et al.  A systematic comparison of contact angle methods , 1993 .

[166]  J. R. Dann Forces involved in the adhesive process: I. Critical surface tensions of polymeric solids as determined with polar liquids , 1970 .

[167]  Egon Matijević,et al.  Surface and Colloid Science , 1971 .

[168]  Jan D. Miller,et al.  The dynamic nature of contact angles as measured by atomic force microscopy. , 2003, Journal of colloid and interface science.

[169]  F. He,et al.  Sliding behavior of water droplet on superhydrophobic surface , 2009 .

[170]  F. Fowkes,et al.  DETERMINATION OF INTERFACIAL TENSIONS, CONTACT ANGLES, AND DISPERSION FORCES IN SURFACES BY ASSUMING ADDITIVITY OF INTERMOLECULAR INTERACTIONS IN SURFACES , 1962 .

[171]  Lei Jiang,et al.  Definition of Superhydrophobic States , 2007 .

[172]  A. Marmur Wetting on Real Surfaces , 1999, Journal of Imaging Science and Technology.

[173]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[174]  Bharat Bhushan,et al.  Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity , 2006 .

[175]  J. Lyklema,et al.  Wettability: thermodynamic relationships between vapour adsorption and wetting. , 1994 .

[176]  A. W. Neumann,et al.  Contact angles and their temperature dependence: thermodynamic status, measurement, interpretation and application , 1974 .

[177]  P. Taylor,et al.  Physical chemistry of surfaces , 1991 .

[178]  G. L. Mack,et al.  The Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops. I. The Spheroidal Segment Method for Acute Angles. , 1935 .

[179]  H. Erbil Surface-free energy analysis of hydrolyzed ethylene-vinyl acetate copolymers , 1987 .

[180]  M. Yekta-fard,et al.  The influences of vapor environment and temperature on the contact angle-drop size relationship , 1988 .

[181]  Abraham Marmur,et al.  Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be? , 2003 .

[182]  J. Rühe,et al.  Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel's model and beyond. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[183]  Bharat Bhushan,et al.  Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[184]  J. K. Spelt,et al.  Sessile-drop contact angle measurements using axisymmetric drop shape analysis , 1987 .

[185]  I. Wark The Physical Chemistry of Flotation. I. The Significance of Contact Angle in Flotation. , 1932 .

[186]  G. Quincke Ueber die Messung der Oberflächenspannung des Wassers und Quecksilbers in Capillarröhren , 1894 .

[187]  C. H. Bosanquet,et al.  LII. Notes on the angle of contact , 1921 .

[188]  M. Chaudhury,et al.  Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems , 1988 .

[189]  R. Good,et al.  A Thermodynamic Derivation of Wenzel's Modification of Young's Equation for Contact Angles; Together with a Theory of Hysteresis1 , 1952 .

[190]  Guanjun Qiao,et al.  Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[191]  Gareth H McKinley,et al.  A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. , 2009, Journal of colloid and interface science.

[192]  H. Busscher,et al.  Spreading pressures of water and n-propanol on polymer surfaces , 1986 .

[193]  S. Siboni,et al.  Contact angle analysis on polymethylmethacrylate and commercial wax by using an environmental scanning electron microscope. , 2007, Scanning.

[194]  P. G. de Gennes,et al.  A model for contact angle hysteresis , 1984 .

[195]  Ramon Pericet-Camara,et al.  Solid-supported thin elastomer films deformed by microdrops , 2009 .

[196]  W. Zisman,et al.  Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids☆ , 1946 .

[197]  F. Fowkes Calculation of work of adhesion by pair potential suummation , 1968 .

[198]  J. Hupka,et al.  The effect of drop size on contact angle over a wide range of drop volumes , 1993 .

[199]  C. Extrand,et al.  Designing for optimum liquid repellency. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[200]  L. Schwartz,et al.  Contact angle hysteresis on heterogeneous surfaces , 1985 .

[201]  I. Saguy,et al.  Contact angle measurement on rough surfaces. , 2004, Journal of colloid and interface science.

[202]  W. Zisman,et al.  The spreading of liquids on low-energy surfaces. III. Hydrocarbon surfaces , 1952 .

[203]  A. Donald,et al.  Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy , 2001, Journal of microscopy.

[204]  Eric R Dufresne,et al.  Deformation of an elastic substrate by a three-phase contact line. , 2011, Physical review letters.

[205]  N. K. Adam,et al.  CCL.—Angles of contact and polarity of solid surfaces , 1925 .

[206]  R. L. Bendure Dynamic adhesion tension measurement , 1973 .

[207]  Arthur Mason Worthington,et al.  II. On pendent drops , 1881, Proceedings of the Royal Society of London.

[208]  R. Pogreb,et al.  Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? , 2007, Langmuir : the ACS journal of surfaces and colloids.

[209]  Yang Cheng,et al.  Microscopic observations of condensation of water on lotus leaves , 2005 .

[210]  F. E. Bartell,et al.  Surface Roughness as Related to Hysteresis of Contact Angles. II. The Systems Paraffin–3 Molar Calcium Chloride Solution–Air and Paraffin–Glycerol–Air , 2002 .

[211]  C. Extrand,et al.  Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces , 2002 .

[212]  Jacob N. Israelachvili,et al.  Contact angles on chemically heterogeneous surfaces , 1989 .

[213]  P. Gane,et al.  Effect of surface depressions on wetting and interactions between hydrophobic pore array surfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[214]  Ramé The Interpretation of Dynamic Contact Angles Measured by the Wilhelmy Plate Method , 1997, Journal of colloid and interface science.

[215]  Faraday Discuss , 1985 .

[216]  Jan D. Miller,et al.  The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship , 1994 .

[217]  Srikanth Vedantam,et al.  Comment on How Wenzel and Cassie Were Wrong by Gao and McCarthy. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[218]  Lichao Gao,et al.  The "lotus effect" explained: two reasons why two length scales of topography are important. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[219]  W. Zisman,et al.  The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene , 1950 .

[220]  H. Erbil Surface energetics of films of poly(vinyl acetate—butyl acrylate) emulsion copolymers , 1996 .

[221]  Robert N. Wenzel,et al.  Surface Roughness and Contact Angle. , 1949 .

[222]  Tayfun Akin,et al.  Effect of pattern size and geometry on the use of Cassie–Baxter equation for superhydrophobic surfaces , 2011 .

[223]  N. Patankar,et al.  Is the Cassie-Baxter formula relevant? , 2010, Langmuir : the ACS journal of surfaces and colloids.

[224]  H. K. Livingston,et al.  Adsorption and the Energy Changes1 at Crystalline Solid Surfaces , 1942 .

[225]  Jürgen Rühe,et al.  Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[226]  George M. Whitesides,et al.  Wetting characteristics of liquid drops at heterogeneous surfaces , 1994 .

[227]  H. Schulze,et al.  Some new observations on line tension of microscopic droplets , 1999 .