A Sparse Representation Method for a Priori Target Signature Optimization in Hyperspectral Target Detection

Many target detectors commonly utilize a single a priori target spectral signature as an input. However, the detection results are greatly affected by the quality of the a priori target spectral signature because the spectral variability phenomenon is universal and anisotropic in hyperspectral image data. This paper proposes a sparse representation-based method to generate an optimized target spectrum from limited target training samples, which is able to alleviate the impact of spectral variability on hyperspectral target detection. When lacking comprehensive knowledge about the target object of interest, an optimized representative target spectrum should be expected to be reconstructed by the hyperspectral data themselves in a sparse representation manner following the characteristics of the data structure and then be generated by a set of selected candidate pixels that contain the target signal with a varying status. With the optimized a priori target signature, the experimental results of the detection of different characteristics of objects with three different types of hyperspectral images confirm the effectiveness, robustness, and generality performance of the proposed method.

[1]  Lei Zhang,et al.  Sparse representation or collaborative representation: Which helps face recognition? , 2011, 2011 International Conference on Computer Vision.

[2]  Francesca Bovolo,et al.  Detection of Land-Cover Transitions in Multitemporal Remote Sensing Images With Active-Learning-Based Compound Classification , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Bo Du,et al.  A Discriminative Metric Learning Based Anomaly Detection Method , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Margaret E. Gardner,et al.  Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2400 nm , 2004 .

[5]  J. Kerekes,et al.  Hyperspectral Imaging Systems , 2006 .

[6]  L.L. Scharf,et al.  Adaptive matched subspace detectors and adaptive coherence estimators , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[7]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[8]  Xindong Wu,et al.  Manifold elastic net: a unified framework for sparse dimension reduction , 2010, Data Mining and Knowledge Discovery.

[9]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[10]  Bruno A. Olshausen,et al.  Learning Sparse Codes for Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[11]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[12]  Heesung Kwon,et al.  Kernel matched subspace detectors for hyperspectral target detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Michael Elad,et al.  On the Role of Sparse and Redundant Representations in Image Processing , 2010, Proceedings of the IEEE.

[14]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  Antonio J. Plaza,et al.  Spatial/spectral endmember extraction by multidimensional morphological operations , 2002, IEEE Trans. Geosci. Remote. Sens..

[16]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[17]  Gary A. Shaw,et al.  Spectral Imaging for Remote Sensing , 2003 .

[18]  John R. Weeks,et al.  Measuring the Physical Composition of Urban Morphology Using Multiple Endmember Spectral Mixture Models , 2003 .

[19]  Bo Du,et al.  PLTD: Patch-Based Low-Rank Tensor Decomposition for Hyperspectral Images , 2017, IEEE Transactions on Multimedia.

[20]  Thomas L. Ainsworth,et al.  Exploiting manifold geometry in hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Marco Diani,et al.  Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Bo Du,et al.  An Automatic Robust Iteratively Reweighted Unstructured Detector for Hyperspectral Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[23]  Liangpei Zhang,et al.  Sparse Transfer Manifold Embedding for Hyperspectral Target Detection , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Benoit Rivard,et al.  Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using HYDICE imagery , 2006 .

[25]  Glenn Healey,et al.  Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions , 1999, IEEE Trans. Geosci. Remote. Sens..

[26]  Ruyi Feng,et al.  Adaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery , 2014 .

[27]  Andrew Chan,et al.  An SVDD-Based Algorithm for Target Detection in Hyperspectral Imagery , 2011, IEEE Geoscience and Remote Sensing Letters.

[28]  Qian Du,et al.  A signal-decomposed and interference-annihilated approach to hyperspectral target detection , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Bo Du,et al.  Random-Selection-Based Anomaly Detector for Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[31]  Trac D. Tran,et al.  Hyperspectral Image Classification via Kernel Sparse Representation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[32]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[33]  Nirmal Keshava,et al.  A Survey of Spectral Unmixing Algorithms , 2003 .

[34]  Brian Curtiss,et al.  A method for manual endmember selection and spectral unmixing , 1996 .

[35]  Stefania Matteoli,et al.  An Overview of Background Modeling for Detection of Targets and Anomalies in Hyperspectral Remotely Sensed Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[36]  Jon Atli Benediktsson,et al.  Multiple Feature Learning for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[37]  John A. Antoniades,et al.  Use of filter vectors in hyperspectral data analysis , 1995, Optics & Photonics.

[38]  Bo Du,et al.  A Kernel-Based Target-Constrained Interference-Minimized Filter for Hyperspectral Sub-Pixel Target Detection , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[39]  K. C. Ho,et al.  Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing , 2014, IEEE Signal Processing Magazine.

[40]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[41]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[42]  F. Meer The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery , 2006 .

[43]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Bo Du,et al.  Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and Statistics-Based Detector for Hyperspectral Images , 2016, IEEE Transactions on Image Processing.

[45]  Chein-I Chang,et al.  Multispectral and hyperspectral image analysis with convex cones , 1999, IEEE Trans. Geosci. Remote. Sens..

[46]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[47]  John A. Richards,et al.  Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[48]  Bo Du,et al.  Compression of hyperspectral remote sensing images by tensor approach , 2015, Neurocomputing.

[49]  Louis L. Scharf,et al.  Matched subspace detectors , 1994, IEEE Trans. Signal Process..

[50]  Jean-Pierre Bibring,et al.  Analysis of OMEGA/Mars Express data hyperspectral data using a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM) : Methodology and first results , 2008 .

[51]  Derek M. Rogge,et al.  Iterative Spectral Unmixing for Optimizing Per-Pixel Endmember Sets , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Louis L. Scharf,et al.  The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic , 2005, IEEE Transactions on Signal Processing.

[53]  Andreas T. Ernst,et al.  ICE: a statistical approach to identifying endmembers in hyperspectral images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..