Performance and Wear Test Results for a 20 kW-Class Ion Engine with Carbon-Carbon Grids
暂无分享,去创建一个
[1] J. R. Brophy,et al. Ion thruster performance model , 1984 .
[2] Dan M. Goebel,et al. Ion source discharge performance and stability , 1982 .
[3] John R. Anderson,et al. Variable specific impulse high power ion thruster , 2005 .
[4] S. Oleson. Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project , 2004 .
[5] D. Goebel,et al. Hollow cathode and keeper-region plasma measurements , 2005 .
[6] John R. Brophy,et al. Status of the Extended Life Test of the Deep Space 1 Flight Spare Ion Engine After 30,000 Hours of Operation , 2003 .
[7] J. Polk,et al. An overview of the Nuclear Electric Xenon Ion System (NEXIS) program , 2003 .
[8] John R. Brophy,et al. Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics , 2004 .
[9] Dan M. Goebel,et al. Development and testing of carbon-based ion optics for 30-cm ion thrusters , 2003 .
[10] James S. Sovey. Improved ion containment using a ring-cusp ion thruster , 1984 .
[11] I. Mikellides. Theoretical Model of a Hollow Cathode Insert Plasma , 2004 .
[12] Michael J. Patterson,et al. Next: NASA's Evolutionary Xenon Thruster development status , 2003 .
[13] J. R. Beattie,et al. Characteristics of ring-cusp discharge chambers , 1991 .
[14] John R. Brophy,et al. NASA's Deep Space 1 ion engine , 2002 .
[15] Michael J. Patterson,et al. NEXT Ion Engine 2000 Hour Wear Test Results , 2004 .
[16] Michael J. Patterson,et al. Herakles Thruster Development for the Prometheus JIMO Mission , 2005 .
[17] M. Noca,et al. Evolutionary strategy for the use of nuclear electric propulsion in planetary exploration , 2001 .
[18] B. Thornber,et al. Temperature distributions in hollow cathode emitters , 2004 .
[19] James E. Polk,et al. Numerical simulations of ion thruster accelerator grid erosion , 2002 .
[20] Jeff Monheiser,et al. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS) , 2004 .
[21] Wei Shih,et al. Manufacturing of 57cm carbon-carbon composite ion optics for the NEXIS ion engine , 2005 .
[22] I. Katz,et al. Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes , 2004 .
[23] Paul J. Wilbur,et al. A Study of High Specific Impulse Ion Thruster Optics , 2001 .
[24] Dan M. Goebel,et al. High Voltage Breakdown Limits of Molybdenum and Carbon-based Grids for Ion Thrusters , 2005 .
[25] R. L. Poeschel,et al. Ring-cusp ion thrusters , 1984 .
[26] James E. Polk,et al. Theoretical model of a hollow cathode plasma for the assessment of insert and keeper lifetimes , 2005 .
[27] Steven R. Oleson,et al. The Electric Propulsion Segment of Prometheus 1 , 2005 .
[28] James E. Polk,et al. Variable Isp High Power Ion Thruster , 2005 .
[29] James E. Polk,et al. Discharge Chamber Performance of the NEXIS Ion Thruster , 2004 .
[30] J. Polk,et al. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity , 2004 .
[31] James E. Polk,et al. Extending hollow cathode life for electric propulsion in long-term missions , 2004 .
[32] Dan M. Goebel,et al. Numerical simulation of two-grid ion optics using a 3D code , 2004 .
[33] Dan M. Goebel,et al. Performance of XIPS Electric Propulsion in On-orbit Station Keeping of the Boeing 702 Spacecraft , 2002 .
[34] Anita Sengupta,et al. Vibration test and analysis of the NEXIS ion engine , 2005 .