Performance and Wear Test Results for a 20 kW-Class Ion Engine with Carbon-Carbon Grids

icy moons of Jupiter. State-of-the-art performance and life assessment tools were used to design the thruster. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster. In parallel, a development model (DM) thruster design was completed and two DM thrusters were fabricated. The first completed performance testing and is currently in an extended wear test. The second successfully completed a vibration test at full Prometheus 1 protoflight levels. The experimental validation of the tools and the thruster design is discussed in this paper.

[1]  J. R. Brophy,et al.  Ion thruster performance model , 1984 .

[2]  Dan M. Goebel,et al.  Ion source discharge performance and stability , 1982 .

[3]  John R. Anderson,et al.  Variable specific impulse high power ion thruster , 2005 .

[4]  S. Oleson Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project , 2004 .

[5]  D. Goebel,et al.  Hollow cathode and keeper-region plasma measurements , 2005 .

[6]  John R. Brophy,et al.  Status of the Extended Life Test of the Deep Space 1 Flight Spare Ion Engine After 30,000 Hours of Operation , 2003 .

[7]  J. Polk,et al.  An overview of the Nuclear Electric Xenon Ion System (NEXIS) program , 2003 .

[8]  John R. Brophy,et al.  Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics , 2004 .

[9]  Dan M. Goebel,et al.  Development and testing of carbon-based ion optics for 30-cm ion thrusters , 2003 .

[10]  James S. Sovey Improved ion containment using a ring-cusp ion thruster , 1984 .

[11]  I. Mikellides Theoretical Model of a Hollow Cathode Insert Plasma , 2004 .

[12]  Michael J. Patterson,et al.  Next: NASA's Evolutionary Xenon Thruster development status , 2003 .

[13]  J. R. Beattie,et al.  Characteristics of ring-cusp discharge chambers , 1991 .

[14]  John R. Brophy,et al.  NASA's Deep Space 1 ion engine , 2002 .

[15]  Michael J. Patterson,et al.  NEXT Ion Engine 2000 Hour Wear Test Results , 2004 .

[16]  Michael J. Patterson,et al.  Herakles Thruster Development for the Prometheus JIMO Mission , 2005 .

[17]  M. Noca,et al.  Evolutionary strategy for the use of nuclear electric propulsion in planetary exploration , 2001 .

[18]  B. Thornber,et al.  Temperature distributions in hollow cathode emitters , 2004 .

[19]  James E. Polk,et al.  Numerical simulations of ion thruster accelerator grid erosion , 2002 .

[20]  Jeff Monheiser,et al.  Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS) , 2004 .

[21]  Wei Shih,et al.  Manufacturing of 57cm carbon-carbon composite ion optics for the NEXIS ion engine , 2005 .

[22]  I. Katz,et al.  Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes , 2004 .

[23]  Paul J. Wilbur,et al.  A Study of High Specific Impulse Ion Thruster Optics , 2001 .

[24]  Dan M. Goebel,et al.  High Voltage Breakdown Limits of Molybdenum and Carbon-based Grids for Ion Thrusters , 2005 .

[25]  R. L. Poeschel,et al.  Ring-cusp ion thrusters , 1984 .

[26]  James E. Polk,et al.  Theoretical model of a hollow cathode plasma for the assessment of insert and keeper lifetimes , 2005 .

[27]  Steven R. Oleson,et al.  The Electric Propulsion Segment of Prometheus 1 , 2005 .

[28]  James E. Polk,et al.  Variable Isp High Power Ion Thruster , 2005 .

[29]  James E. Polk,et al.  Discharge Chamber Performance of the NEXIS Ion Thruster , 2004 .

[30]  J. Polk,et al.  An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity , 2004 .

[31]  James E. Polk,et al.  Extending hollow cathode life for electric propulsion in long-term missions , 2004 .

[32]  Dan M. Goebel,et al.  Numerical simulation of two-grid ion optics using a 3D code , 2004 .

[33]  Dan M. Goebel,et al.  Performance of XIPS Electric Propulsion in On-orbit Station Keeping of the Boeing 702 Spacecraft , 2002 .

[34]  Anita Sengupta,et al.  Vibration test and analysis of the NEXIS ion engine , 2005 .