A nonconvex separation property in Banach spaces

Abstract. We establish, in infinite dimensional Banach space, a nonconvex separation property for general closed sets that is an extension of Hahn-Banach separation theorem. We provide some consequences in optimization, in particular the existence of singular multipliers and show the relation of our property with the extremal principle of Mordukhovich.

[1]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[2]  E. Tronci,et al.  1996 , 1997, Affair of the Heart.

[3]  R. Rockafellar Extensions of subgradient calculus with applications to optimization , 1985 .

[4]  A. Kruger Properties of generalized differentials , 1985 .

[5]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[6]  Jonathan M. Borwein Epi-lipschitz-like sets in banach space: theorems and examples , 1987 .

[7]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[8]  L. Thibault,et al.  Coderivatives of multivalued mappings, locally compact cones and metric regularity , 1999 .

[9]  Stephen M. Robinson,et al.  Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..

[10]  B. Mordukhovich Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings , 1994 .

[11]  L. Thibault,et al.  Metric regularity for strongly compactly Lipschitzian mappings , 1995 .

[12]  L. Thibault,et al.  Verifiable conditions for openness and regularity of multivalued mappings in Banach spaces , 1995 .

[13]  A. Jourani Compactly epi-lipschitzian sets and a-subdifferentials in wt-spaces , 1995 .

[14]  Jean-Paul Penot,et al.  Compactness Properties, Openness Criteria and Coderivatives , 1998 .

[15]  Boris S. Mordukhovich,et al.  Nonconvex differential calculus for infinite-dimensional multifunctions , 1996 .

[16]  B. Mordukhovich,et al.  Extremal characterizations of asplund spaces , 1996 .

[17]  A. Ioffe Proximal Analysis and Approximate Subdifferentials , 1990 .

[18]  Alexander Shapiro,et al.  Optimization Problems with Perturbations: A Guided Tour , 1998, SIAM Rev..