A new chaotic oscillator containing generalised memristor, single op-amp and RLC with chaos suppression and an application for the random number generation

Abstract In this paper, a new chaotic oscillator consists of a single op-amp, two capacitors, one resistor, one inductor, and memristive diode bridge cascaded with an inductor is proposed. The proposed chaotic oscillator has a line of equilibria. In the new oscillator circuit, negative feedback, i.e. inverting terminal of the op-amp is used, and the non-inverting terminal is grounded. The new oscillator has chaotic, periodic, quasi-periodic behaviours, as seen from the Lyapunov spectrum plots. Some more theoretical and numerical tools are used to present the dynamical behaviours of the new oscillator like bifurcation diagram, phase plot. Further, a non-singular terminal sliding mode control (N-TSMC) is designed for the suppression of the chaotic states of the new oscillator. An application of the new oscillator is shown by designing a chaos-based random number generator. Raspberry Pi 3 is used for the realisation of the random number generator.

[1]  Fernando Corinto,et al.  Nonlinear Dynamics of Memristor Oscillators , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Nikolay V. Kuznetsov,et al.  Coexistence of single- and multi-scroll chaotic orbits in a single-link flexible joint robot manipulator with stable spiral and index-4 spiral repellor types of equilibria , 2017 .

[3]  Huagan Wu,et al.  Bi-Stability in an Improved Memristor-Based Third-Order Wien-Bridge Oscillator , 2019 .

[4]  Salih Ergun,et al.  Truly random number generators based on a non-autonomous chaotic oscillator , 2007 .

[5]  Piotr Zbigniew Wieczorek,et al.  Dual-Metastability Time-Competitive True Random Number Generator , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Jacques Kengne,et al.  Dynamical analysis of a novel single Opamp-based autonomous LC oscillator: antimonotonicity, chaos, and multiple attractors , 2018 .

[7]  Ali Emre Pusane,et al.  A novel design method for discrete time chaos based true random number generators , 2014, Integr..

[8]  Qingdu Li,et al.  Chaos generator via Wien-bridge oscillator , 2002 .

[9]  Zhisen Wang,et al.  Dynamics analysis of Wien-bridge hyperchaotic memristive circuit system , 2018 .

[10]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[11]  Xiaoming Han,et al.  Adaptive exponential synchronization of memristive neural networks with mixed time-varying delays , 2016, Neurocomputing.

[12]  Bocheng Bao,et al.  Chaos in a second-order non-autonomous Wien-bridge oscillator without extra nonlinearity , 2018 .

[13]  Herbert H. C. Iu,et al.  Chaos in a memcapacitor based circuit , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[14]  Binoy Krishna Roy,et al.  Hidden attractors in a new complex generalised Lorenz hyperchaotic system, its synchronisation using adaptive contraction theory, circuit validation and application , 2018 .

[15]  Huagan Wu,et al.  Coexisting infinitely many attractors in active band-pass filter-based memristive circuit , 2016 .

[16]  Cheng Hu,et al.  Generalized intermittent control and its adaptive strategy on stabilization and synchronization of chaotic systems , 2016 .

[17]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[18]  Binoy Krishna Roy,et al.  Second order adaptive time varying sliding mode control for synchronization of hidden chaotic orbits in a new uncertain 4-D conservative chaotic system , 2018, Trans. Inst. Meas. Control.

[19]  Luigi Fortuna,et al.  A Gallery of Chaotic oscillators Based on HP memristor , 2013, Int. J. Bifurc. Chaos.

[20]  Bishnu Charan Sarkar,et al.  Single amplifier biquad based autonomous electronic oscillators for chaos generation , 2010 .

[21]  Xinghuo Yu,et al.  On nonsingular terminal sliding-mode control of nonlinear systems , 2013, Autom..

[22]  Riccardo Rovatti,et al.  Implementation and Testing of High-Speed CMOS True Random Number Generators Based on Chaotic Systems , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[24]  包伯成,et al.  Chaotic memristive circuit: equivalent circuit realization and dynamical analysis , 2011 .

[25]  Dongsheng Yu,et al.  Hyperchaos in a memristor-Based Modified Canonical Chua's Circuit , 2012, Int. J. Bifurc. Chaos.

[26]  Tanmoy Banerjee,et al.  Single amplifier biquad based inductor-free Chua’s circuit , 2012, 1210.8409.

[27]  Recai Kiliç,et al.  A survey of Wien bridge-based chaotic oscillators: Design and experimental issues , 2008 .

[28]  Mustafa Türk,et al.  Random number generation using multi-mode chaotic attractor , 2013, 2013 21st Signal Processing and Communications Applications Conference (SIU).

[29]  Bishnu Charan Sarkar,et al.  Chaotic electronic oscillator from single amplifier biquad , 2012 .

[30]  Huagan Wu,et al.  Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator , 2016 .

[31]  Qiang Xu,et al.  A Simple memristor Chaotic Circuit with Complex Dynamics , 2011, Int. J. Bifurc. Chaos.

[32]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[33]  Serdar Çiçek,et al.  A new 3D chaotic system: Dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application , 2016 .

[34]  Wimol San-Um,et al.  A Simple RLCC-Diode-Opamp Chaotic Oscillator , 2014, Int. J. Bifurc. Chaos.

[35]  Muhammad Taher Abuelma'atti,et al.  A memristor-based Wien-bridge sinusoidal/chaotic oscillator , 2016, 2016 International Conference on Electronics, Information, and Communications (ICEIC).

[36]  Zhong Liu,et al.  Generalized Memristor Consisting of Diode Bridge with First Order Parallel RC Filter , 2014, Int. J. Bifurc. Chaos.

[37]  Octavian Cret,et al.  FPGA based TRNG using automatic calibration , 2009, 2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing.

[38]  Bin Deng,et al.  Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation , 2012 .

[39]  Fernando Corinto,et al.  Memristive diode bridge with LCR filter , 2012 .

[40]  Binoy Krishna Roy,et al.  A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems , 2018 .

[41]  Ahmed S. Elwakil,et al.  A family of Colpitts-like chaotic oscillators , 1999 .

[42]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[43]  L. Chua Memristor-The missing circuit element , 1971 .

[44]  Milos Drutarovský,et al.  High Performance True Random Number Generator in Altera Stratix FPLDs , 2004, FPL.

[45]  Huagan Wu,et al.  Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator , 2018 .