Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations

The isotropic and anisotropic magnetic permeability of Magneto-Rheological Elastomers (MREs) is identified using a simple inverse modelling approach. This involves measuring the magnetic flux density and attractive force occurring between magnets, when MRE specimens are placed in between the magnets. Tests were conducted using isotropic MREs with 10–40% and for anisotropic MREs with 10–30%, particle volume concentration. Magnetic permeabilities were then identified through inverse modelling, by simulating the system using commercially available multi-physics finite element software. As expected, the effective permeability of isotropic MREs was found to be scalar-valued; increasing with increasing particle volume concentration (from about 1.6 at 10% to 3.7 at 30% particle volume concentration). The magnetic permeability of transversely isotropic MRE was itself found to be transversely isotropic, with permeabilities in the direction of particle chain alignment from 1.6 at 10% to 4.45 at 30%, which is up to 1.07–1.25 times higher than in the transverse directions. Results of this investigation are demonstrated to show good agreement with those reported in the literature.

[1]  Stefan Awietjan,et al.  Microstructure and Properties of Magnetorheological Elastomers , 2012 .

[2]  Jun Lin,et al.  Imaging shallow three dimensional water-bearing structures using magnetic resonance tomography , 2015 .

[3]  Weihua Li,et al.  Development of a force sensor working with MR elastomers , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[4]  Mark R. Jolly,et al.  The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix , 1996 .

[5]  Yannick Tillier,et al.  Identification of magnetic parameters by inverse analysis coupled with finite-element modeling , 2002 .

[6]  M. Lokander Performance of Magnetorheological Rubber Materials , 2004 .

[7]  S. Saafan,et al.  Study of the temperature dependence of both permeability and selectivity of Mg Zn hexaferrites , 2003 .

[8]  K. Krishnan Introduction to Magnetism and Magnetic Materials , 2016 .

[9]  John Matthew Ginder,et al.  Magnetorheological elastomers: properties and applications , 1999, Smart Structures.

[10]  K. Ostanina,et al.  Overview of Methods for Magnetic Susceptibility Measurement , 2012 .

[11]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[12]  I. Bica Magnetoresistor sensor with magnetorheological elastomers , 2011 .

[13]  B. Moharram,et al.  Particle size distribution, magnetic permeability and dc conductivity of nano-structured and bulk LiNiZn–ferrite samples , 2010 .

[14]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[15]  G. E. Schuman,et al.  Particle size distribution. , 1987 .

[16]  Xinglong Gong,et al.  Full-field deformation of magnetorheological elastomer under uniform magnetic field , 2012 .

[17]  Ivonne Sgura,et al.  Fitting hyperelastic models to experimental data , 2004 .

[18]  I. Bica Compressibility modulus and principal deformations in magneto-rheological elastomer: The effect of the magnetic field , 2009 .

[19]  Dilhan M. Kalyon,et al.  Electric and magnetic properties of a thermoplastic elastomer incorporated with ferromagnetic powders , 1993 .

[20]  J. Cavaillé,et al.  Shape effect in the magnetostriction of ferromagnetic composite , 2010 .

[21]  Debmalya Mukherjee,et al.  Inverse mapping of magnetic flux leakage signal for defect characterization , 2013 .

[22]  F. Gordaninejad,et al.  Sensing Behavior of Magnetorheological Elastomers , 2009 .

[23]  Douglas Read,et al.  Magnetostriction of field-structured magnetoelastomers. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  G. Schubert Manufacture, characterisation and modelling of magneto-rheological elastomers , 2014 .

[25]  Amarildo Tabone Paschoalini,et al.  Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers , 2016 .

[26]  Jianguo Zhu,et al.  Two-dimensional magnetic property measurement for magneto-rheological elastomer , 2013 .

[27]  M. Guyot,et al.  Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions , 2002 .

[28]  J. D. Vicentea,et al.  Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions , 2002 .

[29]  D. Kroetsch,et al.  Particle Size Distribution , 2007 .

[30]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .