-Matrix Arithmetics in Linear Complexity

For hierarchical matrices, approximations of the matrix-matrix sum and product can be computed in almost linear complexity, and using these matrix operations it is possible to construct the matrix inverse, efficient preconditioners based on approximate factorizations or solutions of certain matrix equations.-matrices are a variant of hierarchical matrices which allow us to perform certain operations, like the matrix-vector product, in ``true'' linear complexity, but until now it was not clear whether matrix arithmetic operations could also reach this, in some sense optimal, complexity.We present algorithms that compute the best-approximation of the sum and product of two -matrices in a prescribed -matrix format, and we prove that these computations can be accomplished in linear complexity. Numerical experiments demonstrate that the new algorithms are more efficient than the well-known methods for hierarchical matrices.

[1]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[2]  正人 木村 Max-Planck-Institute for Mathematics in the Sciences(海外,ラボラトリーズ) , 2001 .

[3]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[4]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[5]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[6]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[7]  Lars Grasedyck,et al.  Theorie und Anwendungen Hierarchischer Matrizen , 2006 .

[8]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[9]  Stefan A. Sauter,et al.  Variable Order Panel Clustering , 2000, Computing.

[10]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[11]  W. Hackbusch,et al.  Numerische Mathematik Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L ∞-coefficients , 2002 .

[12]  Jens Markus Melenk,et al.  Approximation of Integral Operators by Variable-Order Interpolation , 2005, Numerische Mathematik.

[13]  Stefan A. Sauter Variable order panel clustering (extended version) , 1999 .

[14]  Lars Grasedyck,et al.  Adaptive Recompression of -Matrices for BEM , 2005, Computing.

[15]  W. Hackbusch,et al.  H 2 -matrix approximation of integral operators by interpolation , 2002 .

[16]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[17]  Steffen Börm,et al.  Data-sparse approximation of non-local operators by H2-matrices , 2007 .

[18]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[19]  W. Hackbusch,et al.  On H2-Matrices , 2000 .

[20]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[21]  Steffen Börm,et al.  BEM with linear complexity for the classical boundary integral operators , 2004, Math. Comput..

[22]  R. Hoppe,et al.  Lectures on Applied Mathematics , 2000 .

[23]  Steffen Börm,et al.  Hybrid cross approximation of integral operators , 2005, Numerische Mathematik.

[24]  Jacob K. White,et al.  Multiscale Bases for the Sparse Representation of Boundary Integral Operators on Complex Geometry , 2002, SIAM J. Sci. Comput..

[25]  S. Börm ℋ2-matrices – Multilevel methods for the approximation of integral operators , 2004 .

[26]  Steffen Börm,et al.  Approximation of Integral Operators by -Matrices with Adaptive Bases , 2005, Computing.