Protein disorder–order interplay to guide the growth of hierarchical mineralized structures

[1]  Anthony J. Giuffre,et al.  Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature's Three-Dimensional Printing. , 2017, ACS nano.

[2]  A. Mata,et al.  Elastin-Like Protein, with Statherin Derived Peptide, Controls Fluorapatite Formation and Morphology , 2017, Front. Physiol..

[3]  Ashutosh Chilkoti,et al.  Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. , 2017, Nature chemistry.

[4]  Lei Liu,et al.  Synthetic nacre by predesigned matrix-directed mineralization , 2016, Science.

[5]  M. Stevens,et al.  A materials science vision of extracellular matrix mineralization , 2016 .

[6]  A. Boskey,et al.  Intrinsically disordered proteins and biomineralization. , 2016, Matrix biology : journal of the International Society for Matrix Biology.

[7]  S. Habelitz,et al.  Amyloid-like ribbons of amelogenins in enamel mineralization , 2016, Scientific Reports.

[8]  P. Anderson,et al.  Inhibitory Effects of Zinc Ions on Enamel Demineralisation Kinetics in vitro , 2015, Caries Research.

[9]  Rui L. Reis,et al.  Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system. , 2015, Nature chemistry.

[10]  A. Chilkoti,et al.  Elastin‐like polypeptides as models of intrinsically disordered proteins , 2015, FEBS letters.

[11]  M. Saito,et al.  Effects of Collagen Crosslinking on Bone Material Properties in Health and Disease , 2015, Calcified Tissue International.

[12]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[13]  A. Mata,et al.  Mineralization and bone regeneration using a bioactive elastin-like recombinamer membrane. , 2014, Biomaterials.

[14]  J. Evans,et al.  The Intrinsically Disordered C-RING Biomineralization Protein, AP7, Creates Protein Phases That Introduce Nanopatterning and Nanoporosities into Mineral Crystals , 2014, Biochemistry.

[15]  A. Mata,et al.  Bioactive membranes for bone regeneration applications: effect of physical and biomolecular signals on mesenchymal stem cell behavior. , 2014, Acta biomaterialia.

[16]  S. Nutt,et al.  An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface. , 2013, Acta biomaterialia.

[17]  M. Yacoub,et al.  Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. , 2013, Nature materials.

[18]  P. Anderson,et al.  Effects of Fluoride on in vitro Enamel Demineralization Analyzed by 19F MAS-NMR , 2013, Caries Research.

[19]  R. Ho,et al.  Helical Phase Driven by Solvent Evaporation in Self-Assembly of Poly(4-vinylpyridine)-block-poly(L‑lactide) Chiral Block Copolymers , 2012 .

[20]  P. Tompa,et al.  Structural disorder in proteins brings order to crystal growth in biomineralization. , 2012, Bone.

[21]  E. Beniash,et al.  Structural Changes in Amelogenin upon Self-assembly and Mineral Interactions , 2012, Journal of dental research.

[22]  J. Loyola-Rodríguez,et al.  Enamel roughness and depth profile after phosphoric acid etching of healthy and fluorotic enamel. , 2012, Australian dental journal.

[23]  L. Gower,et al.  Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links. , 2012, Biomacromolecules.

[24]  P. Anderson,et al.  An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length. , 2011, European journal of oral sciences.

[25]  G. Charras,et al.  Experimental validation of atomic force microscopy-based cell elasticity measurements , 2011, Nanotechnology.

[26]  J. Conway,et al.  Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale , 2011, Proceedings of the National Academy of Sciences.

[27]  Christian Pinali,et al.  Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy , 2011, Nature Protocols.

[28]  C. Parkinson,et al.  Development of an acid challenge-based in vitro dentin disc occlusion model. , 2010, The Journal of clinical dentistry.

[29]  J. Fang,et al.  Chemical regeneration of human tooth enamel under near-physiological conditions. , 2009, Chemical communications.

[30]  J. Evans,et al.  The tooth enamel protein, porcine amelogenin, is an intrinsically disordered protein with an extended molecular configuration in the monomeric form. , 2009, Biochemistry.

[31]  Joanna Aizenberg,et al.  Biological and Biomimetic Materials , 2009 .

[32]  Samuel I Stupp,et al.  Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. , 2008, Chemical reviews.

[33]  R. Lakshminarayanan,et al.  The 32kDa enamelin undergoes conformational transitions upon calcium binding. , 2008, Journal of structural biology.

[34]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[35]  Sarah Rauscher,et al.  Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. , 2006, Structure.

[36]  Dan W. Urry,et al.  What Sustains Life?: Consilient Mechanisms for Protein-Based Machines and Materials , 2006 .

[37]  C. Dobson,et al.  Protein misfolding, functional amyloid, and human disease. , 2006, Annual review of biochemistry.

[38]  B. Clarkson,et al.  Synthesis of Fluorapatite Nanorods and Nanowires by Direct Precipitation from Solution. , 2006, Crystal growth & design.

[39]  M. McKee,et al.  Transglutaminase Crosslinking of SIBLING Proteins in Teeth , 2005, Journal of dental research.

[40]  A. Donald,et al.  The mechanism of amyloid spherulite formation by bovine insulin. , 2005, Biophysical journal.

[41]  Masayuki Otsuki,et al.  Materials chemistry: A synthetic enamel for rapid tooth repair , 2005, Nature.

[42]  J. Warren,et al.  Growth and form of spherulites. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  J. Rodríguez‐Cabello,et al.  Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes , 2004, Journal of materials science. Materials in medicine.

[44]  C Yiu,et al.  Collagen Degradation by Host-derived Enzymes during Aging , 2004, Journal of dental research.

[45]  H. Imai,et al.  Experimental Demonstration for the Morphological Evolution of Crystals Grown in Gel Media , 2003 .

[46]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[47]  Mehdi Balooch,et al.  Nanoindentation and storage of teeth. , 2002, Journal of biomechanics.

[48]  T. P. Weihs,et al.  Nanoindentation mapping of the mechanical properties of human molar tooth enamel. , 2002, Archives of oral biology.

[49]  R. Kniep,et al.  Morphogenesis and Structure of Human Teeth in Relation to Biomimetically Grown Fluorapatite−Gelatine Composites , 2001 .

[50]  Y. Chujo,et al.  Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates , 2001 .

[51]  G W Marshall,et al.  Mechanical properties of human dental enamel on the nanometre scale. , 2001, Archives of oral biology.

[52]  S. Goldstein,et al.  Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. , 1999, Journal of biomechanics.

[53]  S. Cai,et al.  Identification of beta-turn and random coil amide III infrared bands for secondary structure estimation of proteins. , 1999, Biophysical chemistry.

[54]  A. Klibanov,et al.  Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies. , 1999, Biotechnology and bioengineering.

[55]  J. Elliott Structure, crystal chemistry and density of enamel apatites. , 2007, Ciba Foundation symposium.

[56]  A Rachev,et al.  Experimental investigation of the distribution of residual strains in the artery wall. , 1997, Journal of biomechanical engineering.

[57]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[58]  G W Marshall,et al.  Hardness and Young's modulus of human peritubular and intertubular dentine. , 1996, Archives of oral biology.

[59]  G. Hunter,et al.  Determination of the hydroxyapatite-nucleating region of bone sialoprotein. , 1996, Connective tissue research.

[60]  T. Diekwisch,et al.  Evidence for amelogenin "nanospheres" as functional components of secretory-stage enamel matrix. , 1995, Journal of structural biology.

[61]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[62]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[63]  G. H. Nancollas,et al.  Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. , 1992, The Journal of biological chemistry.

[64]  S. Weiner,et al.  Control and Design Principles in Biological Mineralization , 1992 .

[65]  S. Weiner,et al.  Structural and stereochemical relations between acidic macromolecules of organic matrices and crystals. , 1989, Connective tissue research.

[66]  Toyoichi Tanaka,et al.  Kinetics of swelling of gels , 1979 .

[67]  R. Young,et al.  Comparison of synthetic and mineral fluorapatite, Ca5 (PO4)3F, in crystallographic detail , 1972 .

[68]  E. H. Mansfield ON THE BUCKLING OF AN ANNULAR PLATE , 1960 .