Effects of ZnO/TiO2 nanoparticle and TiO2 nanotube additions to dense polycrystalline hydroxyapatite bioceramic from bovine bones.

[1]  Beverley Clarke,et al.  Solid Waste Management Solutions for a Rapidly Urbanizing Area in Thailand: Recommendations Based on Stakeholder Input , 2018, International journal of environmental research and public health.

[2]  P. N. Lisboa-Filho,et al.  Effects of Y-TZP blank manufacturing control and addition of TiO2 nanotubes on structural reliability of dental materials , 2018 .

[3]  F. Wakai,et al.  Evaluation of effects of crack deflection and grain bridging on toughening of nanocrystalline SiO2 stishovite , 2017 .

[4]  P. Cesar,et al.  Effect of titania content and biomimetic coating on the mechanical properties of the Y-TZP/TiO2 composite. , 2017, Dental materials : official publication of the Academy of Dental Materials.

[5]  A. Fischer,et al.  Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants , 2017, Materials.

[6]  Darren J. Martin,et al.  In vitro mineralisation of grafted ePTFE membranes carrying carboxylate groups , 2017, Bioactive materials.

[7]  M. A. Abd. Majid,et al.  In situ synthesis of hydroxyapatite-grafted titanium nanotube composite , 2016 .

[8]  A. Rempel,et al.  Microhardness and phase composition of TiOy/hydroxyapatite nanocomposites synthesized under low-temperature annealing conditions , 2016, Inorganic Materials.

[9]  A. Johnson,et al.  The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dental use. , 2016, Dental materials : official publication of the Academy of Dental Materials.

[10]  J. Gamelas,et al.  Surface properties of carbonated and non-carbonated hydroxyapatites obtained after bone calcination at different temperatures , 2015 .

[11]  P. N. Lisboa-Filho,et al.  Formation and evolution of TiO2 nanotubes in alkaline synthesis , 2015 .

[12]  S. Dutta,et al.  Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review , 2015, Irish Journal of Medical Science (1971 -).

[13]  I. Lieberwirth,et al.  Study of the photodegradation of nanocomposites containing TiO2 nanoparticles dispersed in polyethylene and in poly(ethylene-co-octadecene) , 2014 .

[14]  B. Hahn,et al.  Hydroxyapatite and silk combination-coated dental implants result in superior bone formation in the peri-implant area compared with hydroxyapatite and collagen combination-coated implants. , 2014, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[15]  I. Cacciotti,et al.  Fe-doped hydroxyapatite coatings for orthopedic and dental implant applications , 2014 .

[16]  C. Stokes,et al.  The effect of ZrO2 and TiO2 on solubility and strength of apatite–mullite glass–ceramics for dental applications , 2014, Journal of Materials Science: Materials in Medicine.

[17]  Zhou Fang,et al.  In-situ grown hydroxyapatite whiskers reinforced porous HA bioceramic , 2013 .

[18]  H. Feng,et al.  Titanium surface modified by hydroxyapatite coating for dental implants , 2013 .

[19]  K. Jayathilakan,et al.  Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review , 2012, Journal of Food Science and Technology.

[20]  A. Mehl,et al.  The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio , 2012, Clinical Oral Investigations.

[21]  Mehmet Berkun,et al.  Solid waste management practices in Turkey , 2011 .

[22]  Kun Liu,et al.  The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: An XRD and Raman spectroscopy investigation , 2011 .

[23]  A. Bandyopadhyay,et al.  Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants. , 2011, Surface & coatings technology.

[24]  S. Kalita,et al.  Al2TiO5–Al2O3–TiO2 nanocomposite: Structure, mechanical property and bioactivity studies , 2010 .

[25]  S. Dorozhkin Bioceramics of calcium orthophosphates. , 2010, Biomaterials.

[26]  Khiam Aik Khor,et al.  Hydroxyapatite/titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processes , 2008 .

[27]  S. Kalita,et al.  A quantitative study of the calcination and sintering of nanocrystalline titanium dioxide and its flexural strength properties , 2008 .

[28]  Ioannis S. Arvanitoyannis,et al.  Meat waste treatment methods and potential uses , 2008 .

[29]  Mark Hoffman,et al.  Effect of Grain Size on Mechanical Properties of Submicrometer 3Y‐TZP: Fracture Strength and Hydrothermal Degradation , 2007 .

[30]  H. Yoshimura,et al.  Porosity dependence of elastic constants in aluminum nitride ceramics , 2007 .

[31]  A. F. Costa,et al.  Síntese e caracterização de nanopartículas de TiO2 , 2006 .

[32]  F. Oktar Hydroxyapatite-TiO2 composites , 2006 .

[33]  L. Stanciu,et al.  Influence of powder precursors on reaction sintering of Al2TiO5 , 2004 .

[34]  R. Legeros,et al.  Bioceramics , 1998, Bioceramics.

[35]  L. Hu,et al.  Evaluation of the biocompatibility of a nonceramic hydroxyapatite. , 1997, Journal of endodontics.

[36]  U. Joos,et al.  Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. , 1993, Journal of biomedical materials research.

[37]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[38]  Anthony G. Evans,et al.  Crack deflection processes—I. Theory , 1983 .

[39]  E. Eanes The Influence of Fluoride on the Seeded Growth of Apatite From Stable Supersaturated Solutions at pH 7.4 , 1980, Journal of dental research.

[40]  P. K. Ghosh,et al.  Facile fabrication of epoxy-TiO2 nanocomposites: A critical analysis of TiO2 impact on mechanical properties and toughening mechanisms. , 2018, Ultrasonics sonochemistry.

[41]  X. Miao,et al.  Effect of titania addition on yttria-stabilised tetragonalzirconia ceramics sintered at high temperatures , 2004 .

[42]  R. Heimann Materials Science of Crystalline Bioceramics : A Review of Basic Properties and Applications , 2002 .