One-Dimensional Dynamics of Attention and Decision Making in LIP

[1]  M. Shadlen,et al.  Microstimulation of visual cortex affects the speed of perceptual decisions , 2003, Nature Neuroscience.

[2]  Vivian M Ciaramitaro,et al.  Stimulus probability directs spatial attention: an enhancement of sensitivity in humans and monkeys , 2001, Vision Research.

[3]  M. Goldberg,et al.  A Rapid and Precise On-Response in Posterior Parietal Cortex , 2004, The Journal of Neuroscience.

[4]  J. Maunsell,et al.  Neuronal correlates of inferred motion in primate posterior parietal cortex , 1995, Nature.

[5]  D. Robinson,et al.  Shared neural control of attentional shifts and eye movements , 1996, Nature.

[6]  Joshua W. Brown,et al.  Monitoring and Control of Action by the Frontal Lobes , 2002, Neuron.

[7]  H. Sompolinsky,et al.  Temporal integration by calcium dynamics in a model neuron , 2003, Nature Neuroscience.

[8]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Glimcher,et al.  Activity in Posterior Parietal Cortex Is Correlated with the Relative Subjective Desirability of Action , 2004, Neuron.

[10]  David J. Freedman,et al.  Experience-dependent representation of visual categories in parietal cortex , 2006, Nature.

[11]  J. Assad,et al.  Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance , 1999, Nature Neuroscience.

[12]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[13]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Howard S. Bashinski,et al.  Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations , 1980, Perception & psychophysics.

[15]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[16]  M. Goldberg,et al.  Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. , 2000, Journal of neurophysiology.

[17]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[18]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[19]  J. Gold,et al.  Banburismus and the Brain Decoding the Relationship between Sensory Stimuli, Decisions, and Reward , 2002, Neuron.

[20]  J Jonides,et al.  Attentional capture by abrupt onsets: new perceptual objects or visual masking? , 1996, Journal of experimental psychology. Human perception and performance.

[21]  G. Elston,et al.  A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. , 2004, Cerebral cortex.

[22]  John Rinzel,et al.  A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns , 1995, Journal of Computational Neuroscience.

[23]  M. Shadlen,et al.  Neural Activity in Macaque Parietal Cortex Reflects Temporal Integration of Visual Motion Signals during Perceptual Decision Making , 2005, The Journal of Neuroscience.

[24]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[25]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[26]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[27]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[28]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[29]  Xiao-Jing Wang,et al.  Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition , 2004, Journal of Computational Neuroscience.

[30]  Jochen Ditterich,et al.  Stochastic models of decisions about motion direction: Behavior and physiology , 2006, Neural Networks.

[31]  S. Yantis,et al.  Abrupt visual onsets and selective attention: evidence from visual search. , 1984, Journal of experimental psychology. Human perception and performance.

[32]  James W Bisley,et al.  Neural correlates of attention and distractibility in the lateral intraparietal area. , 2006, Journal of neurophysiology.

[33]  M. Shadlen,et al.  Representation of Time by Neurons in the Posterior Parietal Cortex of the Macaque , 2003, Neuron.

[34]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[35]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[36]  S. Yantis,et al.  Visual attention: control, representation, and time course. , 1997, Annual review of psychology.

[37]  Timothy D. Hanks,et al.  Microstimulation of macaque area LIP affects decision-making in a motion discrimination task , 2006, Nature Neuroscience.

[38]  J. Findlay,et al.  The Relationship between Eye Movements and Spatial Attention , 1986, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[39]  H S Seung,et al.  How the brain keeps the eyes still. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[41]  P. Glimcher,et al.  Responses of intraparietal neurons to saccadic targets and visual distractors. , 1997, Journal of neurophysiology.

[42]  P. Glimcher,et al.  Response properties of saccade-related burst neurons in the central mesencephalic reticular formation. , 1997, Journal of neurophysiology.

[43]  G. Westbrook,et al.  Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents , 1990, Nature.

[44]  L. Abbott,et al.  Eigenvalue spectra of random matrices for neural networks. , 2006, Physical review letters.

[45]  P. Goldman-Rakic,et al.  Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. , 2000, Journal of neurophysiology.

[46]  M. Shadlen,et al.  A representation of the hazard rate of elapsed time in macaque area LIP , 2005, Nature Neuroscience.

[47]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[48]  D. Robinson,et al.  Covert orienting of attention in macaques. II. Contributions of parietal cortex. , 1995, Journal of neurophysiology.

[49]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[50]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[51]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[52]  M. Goldberg,et al.  Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task , 1999, Nature Neuroscience.

[53]  David L. Sparks,et al.  Movement selection in advance of action in the superior colliculus , 1992, Nature.

[54]  Oren Shriki,et al.  Rate Models for Conductance-Based Cortical Neuronal Networks , 2003, Neural Computation.