Probabilistic Greedy Heuristics for Satisfiability Problems

We examine probabilistic greedy heuristics for maximization and minimization versions of the satisfiability problem. Like deterministic greedy algorithms, these heuristics construct a truth assignment one variable at a time. Unlike them, they set a variable true or false using a probabilistic mechanism, the probabilities of a true assignment depending on the incremental number of clauses satisfied if a variable is set true. We discuss alternative probabilistic functions, and characterize the expected performance of the simplest of these rules relative to optimal solutions. We discuss the advantages of probabilistic algorithms in general, and the probabilistic algorithms we analyze in particular.

[1]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[2]  Rajeev Kohli,et al.  The Minimum Satisfiability Problem , 1994, SIAM J. Discret. Math..

[3]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[4]  Madhav V. Marathe,et al.  On Approximation Algorithms for the Minimum Satisfiability Problem , 1996, Inf. Process. Lett..

[5]  B. Efron Computers and the Theory of Statistics: Thinking the Unthinkable , 1979 .

[6]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[7]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[8]  David P. Williamson,et al.  New 3/4-Approximation Algorithms for the Maximum Satisfiability Problem , 1994, SIAM J. Discret. Math..

[9]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[10]  David S. Johnson,et al.  Computers and Inrracrobiliry: A Guide ro the Theory of NP-Completeness , 1979 .

[11]  Rajeev Kohli,et al.  Average Performance of Heuristics for Satisfiability , 1989, SIAM J. Discret. Math..

[12]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Sanjeev Mahajan,et al.  Derandomizing Approximation Algorithms Based on Semidefinite Programming , 1999, SIAM J. Comput..