Phylogenic aspects of the amphibian dual olfactory system.

The phylogenic significance of the subdivision of dual olfactory system is reviewed mainly on the basis of our findings by electron microscopy and lectin histochemistry in the three amphibian species. The dual olfactory system is present in common in these species and consists of the projection from the olfactory epithelium (OE) to the main olfactory bulb (MOB) and that from the vomeronasal epithelium (VNE) to the accessory olfactory bulb (AOB). The phylogenic significance of subdivisions in the dual olfactory system in the amphibian must differently be interpreted. The subdivision of the MOB into its dorsal region (D-MOB) and ventral region (V-MOB) in Xenopus laevis must be attributed to the primitive features in their olfactory receptors. The middle cavity epithelium lining the middle cavity of this frog possesses both ciliated sensory cells and microvillous sensory cells, reminding the OE in fish. The subdivision of the AOB into the rostral (R-AOB) and caudal part (C-AOB) in Bufo japonicus formosus must be regarded as an advanced characteristic. The lack of subdivisions in both MOB and AOB in Cynops pyrrhogaster may reflect their phylogenic primitiveness. Since our lectin histochemistry to detect glycoconjugates expressed in the olfactory pathway reveals the subdivisions in the dual olfactory system in the amphibian, the glycoconjugates may deeply participate in the organization and function of olfactory pathways in phylogeny.

[1]  M. Ichikawa,et al.  Expression of a vomeronasal receptor gene (V1r) and G protein α subunits in goat, Capra hircus, olfactory receptor neurons , 2007, The Journal of comparative neurology.

[2]  J. H. Brann,et al.  Vomeronasal sensory neurons from Sternotherus odoratus (stinkpot/musk turtle) respond to chemosignals via the phospholipase C system , 2006, Journal of Experimental Biology.

[3]  Delicia K Karunadasa,et al.  Expression of pheromone receptor gene families during olfactory development in the mouse: expression of a V1 receptor in the main olfactory epithelium , 2006, The European journal of neuroscience.

[4]  Y. Tillet,et al.  Tyrosine hydroxylase expression in the olfactory/respiratory epithelium in early sheep fetuses (Ovis aries) , 2006, Brain Research.

[5]  Y. Atoji,et al.  Subdivision of the accessory olfactory bulb in the Japanese common toad, Bufo japonicus, revealed by lectin histochemical analysis , 2006, Anatomy and Embryology.

[6]  M. Witt,et al.  Structure and function of the vomeronasal organ. , 2006, Advances in oto-rhino-laryngology.

[7]  E. Weiler,et al.  Olfactory epithelia differentially express neuronal markers , 2005, Journal of neurocytology.

[8]  K. Taniguchi,et al.  Differential expression of neurofilament 200-like immunoreactivity in the main olfactory and vomeronasal systems of the Japanese newt, Cynops pyrrhogaster. , 2005, The Journal of veterinary medical science.

[9]  B. Menco The fine-structural distribution of G-protein receptor kinase 3, β-arrestin-2, Ca2+/calmodulin-dependent protein kinase II and phosphodiesterase PDE1C2, and a Cl−-cotransporter in rodent olfactory epithelia , 2005, Journal of neurocytology.

[10]  T. Iwai,et al.  Ultrastructural localization of α-galactose-containing glycoconjugates in the rat vomeronasal organ , 2005, Journal of neurocytology.

[11]  Herbert Föske Das Geruchsorgan von Xenopus laevis , 1934, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[12]  K. Taniguchi,et al.  Differential expression of histochemical characteristics in the developing olfactory receptor cells in a flatfish, barfin flounder (Verasper moseri). , 2004, Journal of Veterinary Medical Science.

[13]  K. Taniguchi,et al.  Variety in histochemical characteristics of the olfactory receptor cells in a flatfish, barfin flounder (Verasper moseri). , 2004, The Journal of veterinary medical science.

[14]  K. Taniguchi,et al.  Morphogenesis of the olfactory pit in a flatfish, barfin flounder (Verasper moseri). , 2004, The Journal of veterinary medical science.

[15]  S. Mikami,et al.  Fine structure of the epithelia of the vomeronasal organ of horse and cattle , 1985, Cell and Tissue Research.

[16]  H. Breucker,et al.  Development of the olfactory organ in the rainbow fish Nematocentris maccullochi (Atheriniformes, Melanotaeniidae) , 1979, Cell and Tissue Research.

[17]  M. Ichikawa,et al.  Fine structure of the olfactory epithelium in the goldfish, Carassius auratus , 1977, Cell and Tissue Research.

[18]  H. Breucker,et al.  Ultrastructural studies on the epithelia of the olfactory organ of cyprinodonts (teleostei, cyprinodontoidea) , 1976, Cell and Tissue Research.

[19]  H. Wakisaka,et al.  Lectin histochemical study on the olfactory organ of the newt, Cynops pyrrhogaster, revealed heterogeneous mucous environments in a single nasal cavity , 2003, Anatomy and Embryology.

[20]  Ping Chen,et al.  Molecular cloning and characterization of protein phosphatase 2C of vomeronasal sensory epithelium of garter snakes. , 2002, Archives of biochemistry and biophysics.

[21]  A. Martínez-Marcos,et al.  Immunohistochemical identification of components of the chemoattractant signal transduction pathway in vomeronasal bipolar neurons of garter snakes , 2002, Brain Research.

[22]  K. P. Bhatnagar,et al.  Histological definition of the vomeronasal organ in humans and chimpanzees, with a comparison to other primates , 2002, The Anatomical record.

[23]  Ping Chen,et al.  Calcium transients in the garter snake vomeronasal organ. , 2002, Journal of neurophysiology.

[24]  A. Martínez-Marcos,et al.  Neural substrates for processing chemosensory information in snakes , 2002, Brain Research Bulletin.

[25]  E. Liman,et al.  Ultrastructural localization of G‐proteins and the channel protein TRP2 to microvilli of rat vomeronasal receptor cells , 2001, The Journal of comparative neurology.

[26]  K. Taniguchi,et al.  Immunohistochemical studies on the differential maturation of three types of olfactory organs in the rats. , 2001, The Journal of veterinary medical science.

[27]  M. Ichikawa,et al.  Immunocytochemical Study of Gi2α and Goα on the Epithelium Surface of the Rat Vomeronasal Organ , 2001 .

[28]  C. Pinelli,et al.  Localization of FMRFamide-Like Immunoreactivity in the Brain of the Viviparous Skink (Chalcides chalcides) , 2001, Brain, Behavior and Evolution.

[29]  M. Lazzari,et al.  Lectin‐binding patterns in the olfactory system of the lizard, Physignathus lesueurii , 2001, Journal of morphology.

[30]  M. Ichikawa,et al.  Immunocytochemical study of G(i)2alpha and G(o)alpha on the epithelium surface of the rat vomeronasal organ. , 2001, Chemical senses.

[31]  M. Ichikawa,et al.  Morphological and histochemical changes in the regenerating vomeronasal epithelium. , 2000, The Journal of veterinary medical science.

[32]  M. Lazzari,et al.  Lectin cytochemical localisation of glycoconjugates in the olfactory system of the lizards Lacerta viridis and Podarcis sicula , 2000, Anatomy and Embryology.

[33]  D. Drenckhahn,et al.  Identification of cytoskeletal markers for the different microvilli and cell types of the rat vomeronasal sensory epithelium , 2000, Journal of neurocytology.

[34]  S. Saito,et al.  Expression patterns of glycoconjugates in the three distinctive olfactory pathways of the clawed frog, Xenopus laevis. , 2000, The Journal of veterinary medical science.

[35]  M. Halpern,et al.  Chemosensitive conductance and inositol 1,4,5-trisphosphate-induced conductance in snake vomeronasal receptor neurons. , 2000, Chemical senses.

[36]  B. Syuto,et al.  Characterization of olfactory receptor organs in Xenopus laevis daudin , 1999, The Anatomical Record.

[37]  R. L. Moss,et al.  Activation of an anatomically distinct subpopulation of accessory olfactory bulb neurons by chemosensory stimulation , 1999, Neuroscience.

[38]  Kazuaki W. Takahashi,et al.  Fine structure of three types of olfactory organs in Xenopus laevis , 1998, The Anatomical record.

[39]  Y. Tanioka,et al.  Lectin-binding patterns in the olfactory epithelium and vomeronasal organ of the common marmoset. , 1998, The Journal of veterinary medical science.

[40]  M. Halpern,et al.  Heterogeneity in the accessory olfactory system. , 1998, Chemical senses.

[41]  Fasolo,et al.  Prenatal differentiation of mouse vomeronasal neurones , 1998, The European journal of neuroscience.

[42]  H. Hayashi,et al.  OCAM: A New Member of the Neural Cell Adhesion Molecule Family Related to Zone-to-Zone Projection of Olfactory and Vomeronasal Axons , 1997, The Journal of Neuroscience.

[43]  Y. Yoshihara,et al.  OCAM reveals segregated mitral/tufted cell pathways in developing accessory olfactory bulb , 1997, Neuroreport.

[44]  D. L. Meyer,et al.  Differential labelling of primary olfactory system subcomponents by SBA (lectin) and NADPH-d histochemistry in the frog Pipa , 1997, Brain Research.

[45]  M. Halpern,et al.  Segregated populations of mitral/tufted cells in the accessory olfactory bulb , 1997, Neuroreport.

[46]  D. L. Meyer,et al.  Bulbar representation of the ‘water-nose’ during Xenopus ontogeny , 1996, Neuroscience Letters.

[47]  D. L. Meyer,et al.  Soybean agglutinin binding by primary olfactory and primary accessory olfactory projections in different frogs , 1996, Brain Research.

[48]  A. Berghard,et al.  Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  K. Taniguchi,et al.  Development of the Bowman's and Jacobson's glands in the Japanese reddish frog, Rana japonica. , 1996, The Journal of veterinary medical science.

[50]  K. Taniguchi,et al.  Development of the olfactory epithelium and vomeronasal organ in the Japanese reddish frog, Rana japonica. , 1996, The Journal of veterinary medical science.

[51]  M. Halpern,et al.  Differential localization of G proteins in the opossum vomeronasal system , 1995, Brain Research.

[52]  K. Taniguchi,et al.  Fine structure of the vomeronasal organ in the chinchilla (Chinchilla laniger). , 1994, Jikken dobutsu. Experimental animals.

[53]  M. Halpern,et al.  Differential OMP expression in opossum accessory olfactory bulb. , 1993, Neuroreport.

[54]  K. Taniguchi,et al.  Subdivisions of the accessory olfactory bulb, as demonstrated by lectin-histochemistry in the golden hamster , 1993, Neuroscience Letters.

[55]  K. Taniguchi,et al.  [Fine structure of the vomeronasal organ in the house musk shrew (Suncus murinus)]. , 1993, Jikken dobutsu. Experimental animals.

[56]  K. Taniguchi,et al.  Fine structure of the septal olfactory organ of Masera and its associated gland in the golden hamster. , 1993, The Journal of veterinary medical science.

[57]  K. Mori Molecular and cellular properties of mammalian primary olfactory axons , 1993, Microscopy research and technique.

[58]  D. Moran,et al.  Ultrastructural neurobiology of the olfactory mucosa of the brown trout, Salmo trutta , 1992, Microscopy research and technique.

[59]  D. Gattey,et al.  Glycoconjugates are stage- and position-specific cell surface molecules in the developing olfactory system, 1: The CC1 immunoreactive glycolipid defines a rostrocaudal gradient in the rat vomeronasal system. , 1992, Journal of neurobiology.

[60]  P. Giorgi,et al.  Primary olfactory terminations in the forebrain of amphibia: a comparative study with soybean agglutinin. , 1992, Journal fur Hirnforschung.

[61]  Y. Matsusaki,et al.  Fine structure of the vomeronasal organ in the common marmoset (Callithrix jacchus). , 1992, Folia primatologica; international journal of primatology.

[62]  D. L. Meyer,et al.  Functional subdivisions of the olfactory system correlate with lectin-binding properties inXenopus , 1991, Brain Research.

[63]  J. Crandall,et al.  Subsets of olfactory and vomeronasal sensory epithelial cells and axons revealed by monoclonal antibodies to carbohydrate antigens , 1991, Brain Research.

[64]  M. Halpern The organization and function of the vomeronasal system. , 1987, Annual review of neuroscience.

[65]  K. Obata,et al.  Immunochemical identification of subgroups of vomeronasal nerve fibers and their segregated terminations in the accessory olfactory bulb , 1985, Brain Research.

[66]  G. Thommesen Morphology, distribution, and specificity of olfactory receptor cells in salmonid fishes. , 1983, Acta physiologica Scandinavica.

[67]  K. Mochizuki,et al.  Morphological studies on the vomeronasal organ in the golden hamster. , 1982, Nihon juigaku zasshi. The Japanese journal of veterinary science.

[68]  G. Bertmar EVOLUTION OF VOMERONASAL ORGANS IN VERTEBRATES , 1981, Evolution; international journal of organic evolution.

[69]  T. S. Parsons Evolution of the Nasal Structure in the Lower Tetrapods , 1967 .