Just Add Weights: Markov Logic for the Semantic Web

In recent years, it has become increasingly clear that the vision of the Semantic Web requires uncertain reasoning over rich, first-order representations. Markov logic brings the power of probabilistic modeling to first-order logic by attaching weights to logical formulas and viewing them as templates for features of Markov networks. This gives natural probabilistic semantics to uncertain or even inconsistent knowledge bases with minimal engineering effort. Inference algorithms for Markov logic draw on ideas from satisfiability, Markov chain Monte Carlo and knowledge-based model construction. Learning algorithms are based on the conjugate gradient algorithm, pseudo-likelihood and inductive logic programming. Markov logic has been successfully applied to problems in entity resolution, link prediction, information extraction and others, and is the basis of the open-source Alchemy system.

[1]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[2]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[3]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[4]  Michael R. Genesereth,et al.  Logical foundations of artificial intelligence , 1987 .

[5]  J. W. Lloyd,et al.  Foundations of logic programming; (2nd extended ed.) , 1987 .

[6]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[7]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[8]  Robert P. Goldman,et al.  From knowledge bases to decision models , 1992, The Knowledge Engineering Review.

[9]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[10]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[11]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[12]  Bart Selman,et al.  A general stochastic approach to solving problems with hard and soft constraints , 1996, Satisfiability Problem: Theory and Applications.

[13]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[14]  Peter Haddawy,et al.  Answering Queries from Context-Sensitive Probabilistic Knowledge Bases , 1997, Theor. Comput. Sci..

[15]  John D. Lafferty,et al.  Inducing Features of Random Fields , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  C. Lee Giles,et al.  Autonomous citation matching , 1999, AGENTS '99.

[17]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[18]  Nicholas Kushmerick,et al.  Wrapper induction: Efficiency and expressiveness , 2000, Artif. Intell..

[19]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[20]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[21]  G Stix,et al.  The mice that warred. , 2001, Scientific American.

[22]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[23]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[24]  Stuart J. Russell,et al.  Identity Uncertainty and Citation Matching , 2002, NIPS.

[25]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[26]  David Poole,et al.  First-order probabilistic inference , 2003, IJCAI.

[27]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[28]  Constance de Koning,et al.  Editors , 2003, Annals of Emergency Medicine.

[29]  John Mylopoulos,et al.  The Semantic Web - ISWC 2003 , 2003, Lecture Notes in Computer Science.

[30]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[31]  Andrew McCallum,et al.  An Integrated, Conditional Model of Information Extraction and Coreference with Appli , 2004, UAI.

[32]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[33]  Bart Selman,et al.  Towards Efficient Sampling: Exploiting Random Walk Strategies , 2004, AAAI.

[34]  Austin Tate,et al.  Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, July 25-29, 2004, San Jose, California, USA , 2004, AAAI 2004.

[35]  Luc De Raedt,et al.  Clausal Discovery , 1997, Machine Learning.

[36]  Dan Klein,et al.  Unsupervised Learning of Field Segmentation Models for Information Extraction , 2005, ACL.

[37]  Pedro M. Domingos,et al.  Learning the structure of Markov logic networks , 2005, ICML.

[38]  J. Ross Quinlan,et al.  Learning logical definitions from relations , 1990, Machine Learning.

[39]  Ewan Klein,et al.  Genic interaction extraction with semantic and syntactic chains , 2005 .

[40]  Pedro M. Domingos,et al.  Discriminative Training of Markov Logic Networks , 2005, AAAI.

[41]  Dan Roth,et al.  Lifted First-Order Probabilistic Inference , 2005, IJCAI.

[42]  Pedro M. Domingos,et al.  Entity Resolution with Markov Logic , 2006, Sixth International Conference on Data Mining (ICDM'06).

[43]  Pedro M. Domingos,et al.  Memory-Efficient Inference in Relational Domains , 2006, AAAI.

[44]  Pedro M. Domingos,et al.  Sound and Efficient Inference with Probabilistic and Deterministic Dependencies , 2006, AAAI.

[45]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[46]  Matthew Richardson,et al.  The Alchemy System for Statistical Relational AI: User Manual , 2007 .

[47]  Raymond J. Mooney,et al.  Bottom-up learning of Markov logic network structure , 2007, ICML '07.

[48]  Pedro M. Domingos,et al.  Markov Logic in Infinite Domains , 2007, UAI.

[49]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[50]  Pedro M. Domingos,et al.  Joint Inference in Information Extraction , 2007, AAAI.

[51]  Joost N. Kok,et al.  Knowledge Discovery in Databases: PKDD 2007, 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, Warsaw, Poland, September 17-21, 2007, Proceedings , 2007, PKDD.

[52]  Pedro M. Domingos,et al.  Statistical predicate invention , 2007, ICML '07.

[53]  Pedro M. Domingos,et al.  Efficient Weight Learning for Markov Logic Networks , 2007, PKDD.

[54]  Daniel S. Weld,et al.  Automatically refining the wikipedia infobox ontology , 2008, WWW.

[55]  Thomas G. Dietterich,et al.  Integrating Multiple Learning Components through Markov Logic , 2008, AAAI.

[56]  Pedro M. Domingos,et al.  Hybrid Markov Logic Networks , 2008, AAAI.

[57]  Matthew Richardson,et al.  Just add weights , 2008 .

[58]  Pedro M. Domingos,et al.  Lifted First-Order Belief Propagation , 2008, AAAI.

[59]  Azadeh Iranmehr,et al.  Trust Management for Semantic Web , 2009, 2009 Second International Conference on Computer and Electrical Engineering.