Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0

Abstract. We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the JSBACH land-surface scheme, which is part of the MPI-Earth System Model v1. The simulated phenology and net land carbon balance were constrained by globally distributed observations of the fraction of absorbed photosynthetically active radiation (FAPAR, using the TIP-FAPAR product) and atmospheric CO2 at a global set of monitoring stations for the years 2005 to 2009. When constrained by FAPAR observations alone, the system successfully, and computationally efficiently, improved simulated growing-season average FAPAR, as well as its seasonality in the northern extra-tropics. When constrained by atmospheric CO2 observations alone, global net and gross carbon fluxes were improved, despite a tendency of the system to underestimate tropical productivity. Assimilating both data streams jointly allowed the MPI-CCDAS to match both observations (TIP-FAPAR and atmospheric CO2) equally well as the single data stream assimilation cases, thereby increasing the overall appropriateness of the simulated biosphere dynamics and underlying parameter values. Our study thus demonstrates the value of multiple-data-stream assimilation for the simulation of terrestrial biosphere dynamics. It further highlights the potential role of remote sensing data, here the TIP-FAPAR product, in stabilising the strongly underdetermined atmospheric inversion problem posed by atmospheric transport and CO2 observations alone. Notwithstanding these advances, the constraint of the observations on regional gross and net CO2 flux patterns on the MPI-CCDAS is limited through the coarse-scale parametrisation of the biosphere model. We expect improvement through a refined initialisation strategy and inclusion of further biosphere observations as constraints.

[1]  H. Mooney,et al.  23 – Estimations of Global Terrestrial Productivity: Converging toward a Single Number? , 2001 .

[2]  R. Giering,et al.  Retrieving surface parameters for climate models from Moderate Resolution Imaging Spectroradiometer (MODIS)-Multiangle Imaging Spectroradiometer (MISR) Albedo Products , 2007 .

[3]  Jens Kattge,et al.  Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. , 2007, Plant, cell & environment.

[4]  Bernard Pinty,et al.  Do we (need to) care about canopy radiation schemes in DGVMs? Caveats and potential impacts , 2014 .

[5]  Thomas Kaminski,et al.  A coarse grid three-dimensional global inverse model of the atmospheric transport. 2. Inversion of the transport of CO2 in the 1980s , 1999 .

[6]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[7]  Philippe Ciais,et al.  A framework for benchmarking land models , 2012 .

[8]  M. Scholze,et al.  Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon‐cycle data assimilation system , 2012 .

[9]  Harold A. Mooney,et al.  Estimations of Global Terrestrial Productivity , 2001 .

[10]  W. Press Numerical recipes in Fortran 77 : the art of scientific computing : volume 1 of fortran numerical recipes , 1996 .

[11]  Tobias Stacke,et al.  Impact of the soil hydrology scheme on simulated soil moisture memory , 2013, Climate Dynamics.

[12]  Fabienne Maignan,et al.  Constraining a global ecosystem model with multi-site eddy-covariance data , 2012 .

[13]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[14]  Pierre-Philippe Mathieu,et al.  Reviews and Syntheses: Flying the Satellite into Your Model , 2016 .

[15]  Sönke Zaehle,et al.  Towards a more objective evaluation of modelled land-carbon trends using atmospheric CO 2 and satellite-based vegetation activity observations , 2013 .

[16]  Shamil Maksyutov,et al.  Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO2 variability , 2014 .

[17]  S. Running,et al.  MODIS Leaf Area Index (LAI) And Fraction Of Photosynthetically Active Radiation Absorbed By Vegetation (FPAR) Product , 1999 .

[18]  N. Gobron,et al.  Evaluation of the MERIS/ENVISAT FAPAR product , 2007 .

[19]  R. Dickinson,et al.  Simplifying the Interaction of Land Surfaces with Radiation for Relating Remote Sensing Products to Climate Models , 2006 .

[20]  T. Raddatz,et al.  Land contribution to natural CO2 variability on time scales of centuries , 2013 .

[21]  R. Betts,et al.  High sensitivity of future global warming to land carbon cycle processes , 2012 .

[22]  R. Giering,et al.  Consistent assimilation of MERIS FAPAR and atmospheric CO2 into a terrestrial vegetation model and interactive mission benefit analysis , 2011 .

[23]  Maurizio Santoro,et al.  Global covariation of carbon turnover times with climate in terrestrial ecosystems , 2014, Nature.

[24]  E. Dufrene,et al.  Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a process‐oriented biosphere model , 2015 .

[25]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[26]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[27]  Taro Takahashi,et al.  Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models , 2002, Nature.

[28]  Bernard Pinty,et al.  Consolidating the Two-Stream Inversion Package (JRC-TIP) to Retrieve Land Surface Parameters From Albedo Products , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  A. Bondeau,et al.  Comparing global models of terrestrial net primary productivity (NPP): overview and key results , 1999 .

[30]  Nuno Carvalhais,et al.  Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval , 2008 .

[31]  R. Schnur,et al.  Separation of the Effects of Land and Climate Model Errors on Simulated Contemporary Land Carbon Cycle Trends in the MPI Earth System Model version 1 , 2015 .

[32]  Wolfgang Knorr,et al.  Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties , 2000 .

[33]  Wolfgang Knorr,et al.  Uncertainties in global terrestrial biosphere modeling: 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme , 2001 .

[34]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[35]  Ian G. Enting,et al.  Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations* , 1999 .

[36]  P. Cox,et al.  Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models , 2013 .

[37]  Thomas Kaminski,et al.  Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle , 2002 .

[38]  M. Williams,et al.  Improving land surface models with FLUXNET data , 2009 .

[39]  Y. Niwa,et al.  Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. , 2013 .

[40]  G. Balsamo,et al.  The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data , 2014 .

[41]  Marko Scholze,et al.  On the capability of Monte Carlo and adjoint inversion techniques to derive posterior parameter uncertainties in terrestrial ecosystem models , 2012 .

[42]  Thomas Lavergne,et al.  An inverse radiative transfer model of the vegetation canopy based on automatic differentiation , 2010 .

[43]  Nadine Gobron,et al.  Exploiting the MODIS albedos with the Two‐stream Inversion Package (JRC‐TIP): 2. Fractions of transmitted and absorbed fluxes in the vegetation and soil layers , 2011 .

[44]  C. M. Luke Modelling aspects of land-atmosphere interaction : thermal instability in peatland soils and land parameter estimation through data assimilation , 2011 .

[45]  S. Seneviratne,et al.  Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level , 2010, Science.

[46]  Bernard Pinty,et al.  A New Global fAPAR and LAI Dataset Derived from Optimal Albedo Estimates: Comparison with MODIS Products , 2016, Remote. Sens..

[47]  Thomas Raddatz,et al.  A reconstruction of global agricultural areas and land cover for the last millennium , 2008 .

[48]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[49]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[50]  R. Giering,et al.  The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and challenges , 2013 .

[51]  G. Lasslop 20: Model data fusion for terrestrial biosphere models with carbon and water cycle observations , 2011 .

[52]  Kirsten Thonicke,et al.  SPITFIRE within the MPI Earth system model: Model development and evaluation , 2014 .

[53]  A. Jacobson,et al.  A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes , 2007 .

[54]  Philippe Peylin,et al.  Quantifying the model structural error in carbon cycle data assimilation systems , 2012 .

[55]  Sander Houweling,et al.  CO 2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport , 2003 .

[56]  Pieter P. Tans,et al.  Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network , 1994 .

[57]  Victor Brovkin,et al.  Global biogeophysical interactions between forest and climate , 2009 .

[58]  N. Gobron,et al.  Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana , 2012 .

[59]  Corinne Le Quéré,et al.  Carbon emissions from land use and land-cover change , 2012 .

[60]  Jens Kattge,et al.  Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? , 2007 .

[61]  G. Balsamo,et al.  The WFDEI Meteorological Forcing Data , 2018 .

[62]  Griewank,et al.  On automatic differentiation , 1988 .

[63]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[64]  K. Thonicke,et al.  Identifying environmental controls on vegetation greenness phenology through model–data integration , 2014 .

[65]  Thomas Kaminski,et al.  Propagating uncertainty through prognostic carbon cycle data assimilation system simulations , 2007 .

[66]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[67]  J. Sarmiento,et al.  Correction to “A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes” , 2007 .

[68]  Markus Reichstein,et al.  Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models , 2007 .

[69]  Stephen Sitch,et al.  Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics , 2005 .

[70]  M. Lomas,et al.  Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends , 2013, Global change biology.

[71]  I. C. Prentice,et al.  Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) , 2008 .

[72]  Are Olsen,et al.  Global surface-ocean p CO 2 and sea–air CO 2 flux variability from an observation-driven ocean mixed-layer scheme , 2013 .

[73]  Ranga B. Myneni,et al.  Recent trends and drivers of regional sources and sinks of carbon dioxide , 2015 .

[74]  S. Zaehle,et al.  Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis , 2015 .

[75]  R. Giering,et al.  Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS) , 2005 .

[76]  R. Giering,et al.  Carbon cycle data assimilation with a generic phenology model , 2010 .

[77]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[78]  Thomas Kaminski,et al.  A prototype of a data assimilation system based on automatic differentiation , 2003 .

[79]  G. Farquhar,et al.  Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light , 1985, Planta.

[80]  V. Brovkin,et al.  Representation of natural and anthropogenic land cover change in MPI‐ESM , 2013 .

[81]  Daniel S. Goll,et al.  Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling , 2012 .

[82]  Martin Heimann,et al.  The global atmospheric tracer model TM3 , 1995 .

[83]  Shaun Quegan,et al.  Model–data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications , 2005 .

[84]  Nadine Gobron,et al.  Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP): 1. Effective leaf area index, vegetation, and soil properties , 2011 .

[85]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[86]  W. Knorr,et al.  Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling , 2005 .