SCIAMACHY: Mission Objectives and Measurement Modes

Abstract SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) is a spectrometer designed to measure sunlight transmitted, reflected, and scattered by the earth’s atmosphere or surface in the ultraviolet, visible, and near-infrared wavelength region (240–2380 nm) at moderate spectral resolution (0.2–1.5 nm, λ/Δλ ≈ 1000–10 000). SCIAMACHY will measure the earthshine radiance in limb and nadir viewing geometries and solar or lunar light transmitted through the atmosphere observed in occultation. The extraterrestrial solar irradiance and lunar radiance will be determined from observations of the sun and the moon above the atmosphere. The absorption, reflection, and scattering behavior of the atmosphere and the earth’s surface is determined from comparison of earthshine radiance and solar irradiance. Inversion of the ratio of earthshine radiance and solar irradiance yields information about the amounts and distribution of important atmospheric constituents and the spectral reflecta...

[1]  M. McCormick,et al.  Satellite studies of the stratospheric aerosol , 1979 .

[2]  Gary J. Rottman,et al.  Solar Mesosphere Explorer: Scientific objectives and results , 1983 .

[3]  J. Burrows,et al.  Gome Solar UV/VIS Irradiance Measurements between 1995 and 1997 – First Results on Proxy Solar Activity Studies , 1998 .

[4]  David Rind,et al.  Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations , 1998, Nature.

[5]  Arlin J. Krueger,et al.  The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for NIMBUS G , 1975 .

[6]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[7]  John P. Burrows,et al.  Satellite measurements of atmospheric ozone profiles, including tropospheric ozone, from ultraviolet/visible measurements in the nadir geometry: a potential method to retrieve tropospheric ozone , 1997 .

[8]  James F. Gleason,et al.  Anomalously low ozone over the Arctic , 1997 .

[9]  Stanley C. Solomon,et al.  On the interpretation of zenith sky absorption measurements , 1987 .

[10]  J. Holton,et al.  Stratosphere‐troposphere exchange , 1995 .

[11]  Rolf Müller,et al.  Severe chemical ozone loss in the Arctic during the winter of 1995–96 , 1997, Nature.

[12]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[13]  R. B. Abrams,et al.  Model studies of nitric oxide fluorescence in the earth's backscattered spectrum , 1982 .

[14]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[15]  William P. Chu,et al.  SAGE II inversion algorithm , 1989 .

[16]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[17]  R. A. Elliot,et al.  Optical remote sensing of the atmosphere. , 1985, Applied optics.

[18]  F. X. Kneizys,et al.  MODTRAN3: Suitability as a flux-divergence code , 1995 .

[19]  R. R. Conway,et al.  Implications of Satellite OH Observations for Middle Atmospheric H2O and Ozone , 1997 .

[20]  Howard K. Roscoe,et al.  Ozone measurements by zenith-sky spectrometers: An evaluation of errors in air-mass factors calculated by radiative transfer models , 1995 .

[21]  Laurence S. Rothman,et al.  Atmospheric Spectral Transmittance And Radiance: FASCOD1 B , 1981, Other Conferences.

[22]  S. Singer,et al.  A method for the determination of the vertical ozone distribution from a satellite , 1957 .

[23]  Brian J. Kerridge,et al.  Direct measurement of tropospheric ozone distributions from space , 1998, Nature.

[24]  J. Kerr,et al.  Nitrogen Dioxide Concentrations in the Atmosphere , 1973, Nature.

[25]  Kelly Chance,et al.  Scanning imaging absorption spectrometer for atmospheric chartography , 1991, Defense, Security, and Sensing.

[26]  Kees Smorenburg,et al.  Calibration concept of scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY) , 1994, Other Conferences.

[27]  David J. Hofmann Recovery of Antarctic ozone hole , 1996, Nature.

[28]  John P. Burrows,et al.  Retrieval of atmospheric constituents in the uv-visible: a new quasi-analytical approach for the calculation of weighting functions , 1998 .

[29]  David W. Rusch,et al.  Solar Mesosphere Explorer Near-Infrared Spectrometer: Measurements of 1.27-μm radiances and the inference of mesospheric ozone , 1984 .

[30]  Kelly Chance,et al.  SCIAMACHY and GOME - The scientific objectives , 1993, Other Conferences.

[31]  Vladimir V. Rozanov,et al.  GOMETRAN: A radiative transfer model for the satellite project GOME, the plane-parallel version , 1997 .

[32]  Lawrence E. Flynn,et al.  Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique , 1996 .

[33]  William B. Grant,et al.  Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A , 1996 .

[34]  Ruud W. M. Hoogeveen,et al.  Sciamachy instrument development for poem-1 , 1994 .

[35]  Rolf Mager,et al.  SCIAMACHY: a new generation of hyperspectral remote sensing instrument , 1997, Other Conferences.

[36]  J. Russell,et al.  The Seasonal and Long Term Changes in Mesospheric Water Vapor , 1997 .

[37]  J. Burrows,et al.  DOAS Zenith Sky Observations: 2. Seasonal Variation of BrO Over Bremen (53°N) 1994-1995 , 1999 .

[38]  Ulrich Platt,et al.  Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV , 1980 .

[39]  P. Ashcroft,et al.  Limits of space-based remote sensing for methane source characterization , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[40]  John P. Burrows,et al.  SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography , 1992 .

[41]  Charles A. Barth,et al.  Solar‐terrestrial coupling: Low‐latitude thermospheric nitric oxide , 1988 .

[42]  L. E. Mauldin,et al.  Stratospheric Aerosol And Gas Experiment II Instrument: A Functional Description , 1985 .

[43]  P. Crutzen,et al.  A Reevaluation of the Ozone Budget with HALOE UARS Data: No Evidence for the Ozone Deficit , 1995, Science.

[44]  J. Burrows,et al.  Ozone profile retrieval from GOME satellite data I : Algorithm description , 1997 .

[45]  John P. Burrows,et al.  Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography , 1991, Defense, Security, and Sensing.

[46]  Jack Fishman,et al.  Distribution of tropospheric ozone determined from satellite data , 1990 .

[47]  R. Mcpeters Climatology of nitric oxide in the upper stratosphere, mesosphere, and thermosphere: 1979 through 1986 , 1989 .

[48]  Stefan Noel,et al.  SCIAMACHY on-ground/in-flight calibration, performance verification, and monitoring concepts , 1997, Optics & Photonics.

[49]  Carl A. Reber,et al.  The Upper Atmosphere Research Satellite (UARS) mission , 1993 .

[50]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .

[51]  Ruud W. M. Hoogeveen,et al.  Low-noise InGaAs infrared 1.0- to 2.4-μm focal plane arrays for SCIAMACHY , 1997, Remote Sensing.

[52]  Abhay M. Joshi,et al.  Near-infrared (1-3 micron) InGaAs detectors and arrays - Crystal growth leakage current and reliability , 1993, Other Conferences.

[53]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[54]  J. Grainger,et al.  Anomalous Fraunhofer Line Profiles , 1962, Nature.

[55]  Sander Slijkhuis,et al.  Noise-related limits on the detectability of concentration variations of CH4 and CO with SCIAMACHY , 1995, Remote Sensing.