Small singular values can increase in lower precision

We perturb a real matrix $A$ of full column rank, and derive lower bounds for the smallest singular values of the perturbed matrix, for two classes of perturbations: deterministic normwise absolute, and probabilistic componentwise relative. Both classes of bounds, which extend existing lower-order expressions, demonstrate a potential increase in the smallest singular values. Our perturbation results represent a qualitative model for the increase in the small singular values after a matrix has been demoted to a lower arithmetic precision. Numerical experiments confirm the qualitative validity of the model and its ability to predict singular values changes in the presence of decreased arithmetic precision.

[1]  E. Carson,et al.  Single-pass Nyström approximation in mixed precision , 2022, ArXiv.

[2]  Minghua Lin,et al.  On some lower bounds for smallest singular value of matrices , 2021, Appl. Math. Lett..

[3]  Xu Shun,et al.  Two new lower bounds for the smallest singular value , 2021, Journal of Mathematical Inequalities.

[4]  Caili Sang Schur Complement-Based Infinity Norm Bounds for the Inverse of DSDD Matrices , 2020, Bulletin of the Iranian Mathematical Society.

[5]  Chaoqian Li Schur Complement-Based Infinity Norm Bounds for the Inverse of SDD Matrices , 2020, Bulletin of the Malaysian Mathematical Sciences Society.

[6]  Martin Lotz,et al.  Wilkinson’s Bus: Weak Condition Numbers, with an Application to Singular Polynomial Eigenproblems , 2019, Found. Comput. Math..

[7]  Nicholas A. Cook Lower bounds for the smallest singular value of structured random matrices , 2016, The Annals of Probability.

[8]  Felipe Cucker,et al.  Probabilistic analyses of condition numbers* , 2016, Acta Numerica.

[9]  J. Demmel The Probability That a Numerical, Analysis Problem Is Difficult , 2013 .

[10]  Diego Armentano,et al.  Stochastic perturbations and smooth condition numbers , 2010, J. Complex..

[11]  Siegfried M. Rump,et al.  Inversion of extremely Ill-conditioned matrices in floating-point , 2009 .

[12]  Terence Tao,et al.  Smooth analysis of the condition number and the least singular value , 2008, Math. Comput..

[13]  Ting-Zhu Huang,et al.  Estimation of ||A-1||∞ and the smallest singular value , 2008, Comput. Math. Appl..

[14]  Zlatko Drmac,et al.  New Fast and Accurate Jacobi SVD Algorithm. I , 2007, SIAM J. Matrix Anal. Appl..

[15]  T. Tao,et al.  The condition number of a randomly perturbed matrix , 2007, STOC '07.

[16]  Michael Stewart,et al.  Perturbation of the SVD in the presence of small singular values , 2006 .

[17]  Shang-Hua Teng,et al.  Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM J. Matrix Anal. Appl..

[18]  Charles R. Johnson,et al.  Further lower bounds for the smallest singular value , 1998 .

[19]  Alan J. Laub,et al.  Statistical Condition Estimation for Linear Systems , 1998, SIAM J. Sci. Comput..

[20]  Gu Dun-he,et al.  A NOTE ON A LOWER BOUND FOR THE SMALLEST SINGULAR VALUE , 1997 .

[21]  G. W. Stewart,et al.  Stochastic Perturbation Theory , 1990, SIAM Rev..

[22]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[23]  Z. Drmač Algorithm 977: A QR-Preconditioned QR SVD Method for Computing the SVD with High Accuracy , 2017, ACM Transactions on Mathematical Software.

[24]  Limin Zou,et al.  A lower bound for the smallest singular value , 2012 .

[25]  Zlatko Drmac,et al.  New Fast and Accurate Jacobi SVD Algorithm. II , 2007, SIAM J. Matrix Anal. Appl..

[26]  Charles R. Johnson A Gersgorin-type lower bound for the smallest singular value , 1989 .

[27]  G. Stewart A second order perturbation expansion for small singular values , 1984 .

[28]  J. Varah A lower bound for the smallest singular value of a matrix , 1975 .