Why is black hole entropy affected by rotation?

[1]  G. Horowitz,et al.  Almost all extremal black holes in AdS are singular , 2022, Journal of High Energy Physics.

[2]  Tao Wang,et al.  High temperature AdS black holes are low temperature quantum phonon gases , 2022, Physics Letters B.

[3]  B. McInnes The special role of toroidal black holes in holography , 2022, Nuclear Physics B.

[4]  H. Elfner,et al.  Global angular momentum generation in heavy-ion reactions within a hadronic transport approach , 2022, 2212.14385.

[5]  Y. Ong On black hole thermodynamics, singularity, and gravitational entropy , 2022, General Relativity and Gravitation.

[6]  A. Mukhopadhyay Editorial: New frontiers in holographic duality , 2022, The European Physical Journal C.

[7]  Danning Li,et al.  Inhomogeneous chiral condensation under rotation in the holographic QCD , 2022, 2208.05668.

[8]  M. Hippert,et al.  QCD Equilibrium and Dynamical Properties from Holographic Black Holes , 2022, Suplemento de la Revista Mexicana de Física.

[9]  Run-Qiu Yang,et al.  Tightening the Penrose inequality , 2022, Science China Physics, Mechanics & Astronomy.

[10]  D. Hooper,et al.  Cosmological Magnetic Fields from Primordial Kerr-Newman Black Holes , 2022, 2206.04066.

[11]  E. Verlinde,et al.  Black hole entropy and long strings , 2022, International Journal of Modern Physics D.

[12]  X. Shu,et al.  Hypercritical Accretion for Black Hole High Spin in Cygnus X-1 , 2022, Research in Astronomy and Astrophysics.

[13]  R. Mann,et al.  Holographic CFT phase transitions and criticality for charged AdS black holes , 2021, Journal of High Energy Physics.

[14]  S. Fairhurst,et al.  General-relativistic precession in a black-hole binary , 2021, Nature.

[15]  R. Emparan,et al.  Black tsunamis and naked singularities in AdS , 2021, Journal of High Energy Physics.

[16]  A. Soloviev Hydrodynamic attractors in heavy ion collisions: a review , 2021, The European Physical Journal C.

[17]  Grant N. Remmen,et al.  Causality, unitarity, and the weak gravity conjecture , 2021, Journal of High Energy Physics.

[18]  Y. Ong,et al.  Understanding gravitational entropy of black holes: A new proposal via curvature invariants , 2021, Physical Review D.

[19]  Haoting Xu,et al.  How anti-de Sitter black holes reach thermal equilibrium , 2021, Physics Letters B.

[20]  B. McInnes Inside Flat Event Horizons , 2022, 2206.00198.

[21]  B. McInnes Extremal bifurcations of rotating AdS4 black holes , 2021, Journal of High Energy Physics.

[22]  J. Liao,et al.  QCD Phase Structure Under Rotation , 2021, Strongly Interacting Matter under Rotation.

[23]  B. McInnes The Weak Gravity Conjecture Requires the Existence of Exotic AdS Black Holes , 2021, 2104.07373.

[24]  I. Mandel,et al.  Cygnus X-1 contains a 21–solar mass black hole—Implications for massive star winds , 2021, Science.

[25]  F. Gelis Some aspects of the theory of heavy ion collisions , 2021, Reports on progress in physics. Physical Society.

[26]  D. Marolf,et al.  Observations of Hawking radiation: the Page curve and baby universes , 2020, Journal of High Energy Physics.

[27]  Joydeep Chakravarty Overcounting of interior excitations: a resolution to the bags of gold paradox in AdS , 2020, Journal of High Energy Physics.

[28]  J. Maldacena Comments on magnetic black holes , 2020, Journal of High Energy Physics.

[29]  C. P. Hofmann Thermomagnetic properties of QCD , 2020, 2012.06461.

[30]  F. Ullah,et al.  Astrophysical hints for magnetic black holes , 2020, Physical Review D.

[31]  J. Berger,et al.  Phenomenology of magnetic black holes with electroweak-symmetric coronas , 2020, 2007.03703.

[32]  F. Benini,et al.  Black Holes in 4D N=4 Super-Yang-Mills Field Theory , 2020 .

[33]  R. Emparan Predictivity lost, predictivity regained: A Miltonian cosmic censorship conjecture , 2020, International Journal of Modern Physics D.

[34]  Y. Ong,et al.  Thermodynamics of shearing massless scalar field spacetimes is inconsistent with the Weyl curvature hypothesis , 2020, 2004.10222.

[35]  V. Cardoso,et al.  Superradiance: New Frontiers in Black Hole Physics , 2020 .

[36]  M. Baggioli Applied Holography , 2019, SpringerBriefs in Physics.

[37]  D. Cassani,et al.  Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5 black holes , 2018, Journal of High Energy Physics.

[38]  B. McInnes Applied holography of the AdS5–Kerr space–time , 2018, International Journal of Modern Physics A.

[39]  Joonho Kim,et al.  Large AdS black holes from QFT , 2018, 1810.12067.

[40]  B. Mohanty Measurements of spin alignment of vector mesons and global polarization of hyperons with ALICE at the LHC , 2017, 1711.02018.

[41]  G. S. Averichev,et al.  Global Λ hyperon polarization in nuclear collisions , 2017, Nature.

[42]  Nasim,et al.  Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid , 2017 .

[43]  Y. Ivanov,et al.  Vorticity in heavy-ion collisions at the JINR Nuclotron-based Ion Collider fAcility , 2017, 1701.01319.

[44]  S. Gongyo,et al.  Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics , 2017, Journal of High Energy Physics.

[45]  H. Petersen The Beam Energy Scan at the Relativistic Heavy Ion Collider , 2017 .

[46]  S. Gongyo,et al.  Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics , 2016, Journal of High Energy Physics.

[47]  Y. Ivanov,et al.  Entropy production and effective viscosity in heavy-ion collisions , 2016, 1605.02476.

[48]  Zi-Wei Lin,et al.  Rotating quark-gluon plasma in relativistic heavy ion collisions , 2016, 1602.06580.

[49]  A. Yamamoto,et al.  Magnetism and rotation in relativistic field theory , 2015, 1504.05826.

[50]  V. A. Miransky,et al.  Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals , 2015, 1503.00732.

[51]  Yu-Xiao Liu,et al.  Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition. , 2015, Physical review letters.

[52]  V. Cardoso,et al.  Superradiance , 2015, Lecture Notes in Physics.

[53]  Makoto Natsuume AdS/CFT Duality User Guide , 2014, 1409.3575.

[54]  A. Schäfer,et al.  Paramagnetic squeezing of QCD matter. , 2013, Physical review letters.

[55]  D. Mateos,et al.  Gauge/String Duality, Hot QCD and Heavy Ion Collisions: Green–Kubo formula for transport coefficients , 2014 .

[56]  D. Keane The Beam Energy Scan at the Relativistic Heavy Ion Collider , 2013 .

[57]  R. Tavakol,et al.  A gravitational entropy proposal , 2013, 1303.5612.

[58]  D. Mateos Gauge/string duality applied to heavy-ion collisions: limitations, insights and prospects , 2011, 1106.3295.

[59]  R. Rashkov,et al.  Gauge/String Duality , 2010 .

[60]  H. Reall,et al.  Black Holes in Higher Dimensions: Kaluza–Klein thoery , 2012 .

[61]  I. Bengtsson,et al.  BLACK HOLE THERMODYNAMICS , 2008 .

[62]  M. Buballa COLOR SUPERCONDUCTIVITY IN DENSE QUARK MATTER , 2008 .

[63]  M. Visser The Kerr spacetime: A brief introduction , 2007, 0706.0622.

[64]  L. Motl,et al.  The String landscape, black holes and gravity as the weakest force , 2006, hep-th/0601001.

[65]  L. Motl,et al.  Higher-order corrections to mass-charge relation of extremal black holes , 2006, hep-th/0606100.

[66]  C. Rovelli,et al.  Black Hole Entropy: Inside or Out? , 2005, hep-th/0501103.

[67]  G. Gibbons,et al.  The first law of thermodynamics for Kerr–anti-de Sitter black holes , 2004, hep-th/0408217.

[68]  H. Ren Color Superconductivity in a Dense Quark Matter , 2003, hep-ph/0307125.

[69]  T. Schaefer,et al.  Color superconductivity in dense quark matter , 2000, hep-ph/0003185.

[70]  G. Cognola,et al.  Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories , 1999, hep-th/9908022.

[71]  Dietmar Klemm,et al.  Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories , 2000 .

[72]  C. Bachas on D-branes , 1999 .

[73]  S.W.Hawking,et al.  Rotation and the AdS / CFT correspondence , 1998, hep-th/9811056.

[74]  E. Witten ANTI-DE SITTER SPACE, THERMAL PHASE TRANSITION AND CONFINEMENT IN GAUGE THEORIES , 1998, hep-th/9803131.

[75]  N. Dadhich,et al.  ON THE THIRD LAW OF BLACK HOLE DYNAMICS , 1997, gr-qc/9704070.

[76]  R. Penrose The road to reality. , 1984, Nursing times.

[77]  Illtyd Trethowan Causality , 1938 .

[78]  S. J. Barnett MAGNETIZATION BY ROTATION. , 1918, Science.