Spectral Transition for Dirac Operators with Electrostatic δ -Shell Potentials Supported on the Straight Line.

In this note the two dimensional Dirac operator Aη with an electrostatic δ-shell interaction of strength η ∈ R supported on a straight line is studied. We observe a spectral transition in the sense that for the critical interaction strengths η = ±2 the continuous spectrum of Aη inside the spectral gap of the free Dirac operator A0 collapses abruptly to a single point.

[1]  M. Abramowitz,et al.  Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables , 1966 .

[2]  SPECTRA OF SELF-ADJOINT EXTENSIONS AND APPLICATIONS TO SOLVABLE SCHRÖDINGER OPERATORS , 2006, math-ph/0611088.

[3]  J. Behrndt,et al.  ON DIRAC OPERATORS WITH ELECTROSTATIC δ-SHELL INTERACTIONS OF CRITICAL STRENGTH , 2017 .

[4]  On a differential operator appearing in the theory of irreversible quantum graphs , 2004 .

[5]  P. Exner,et al.  On Dirac operators in R 3 with electrostatic and Lorentz scalar δ -shell interactions , 2019 .

[6]  S. Blundell,et al.  The Dirac Equation , 2014 .

[7]  S. Fournais,et al.  Self-Adjointness of Two-Dimensional Dirac Operators on Domains , 2017, 1704.06106.

[9]  J. Behrndt,et al.  Self-Adjoint Dirac Operators on Domains in R 3. , 2019, Annales Henri Poincare.

[10]  On the Discrete Spectrum of a Family of Differential Operators , 2004, math/0403226.

[11]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[12]  J. Behrndt,et al.  Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, and abstract Weyl functions , 2014, 1404.0922.

[13]  H. Woracek,et al.  Some interpolation problems of Nevanlinna-Pick type. The Kreĭn-Langer method , 1998 .

[14]  P. Exner,et al.  On the spectral properties of Dirac operators with electrostatic δ-shell interactions , 2016, 1609.00608.

[15]  L. Vega,et al.  Shell interactions for Dirac operators , 2013, 1303.2519.

[16]  M. Langer,et al.  Boundary value problems for elliptic partial differential operators on bounded domains , 2007 .

[17]  V. Derkach,et al.  Generalized resolvents and the boundary value problems for Hermitian operators with gaps , 1991 .

[18]  Badreddine Benhellal Spectral Properties of the Dirac Operator coupled with $\delta$-Shell Interactions , 2021 .

[19]  A magnetic version of the Smilansky–Solomyak model , 2017, 1708.07375.

[20]  Spectral analysis of a class of Schroedinger operators exhibiting a parameter-dependent spectral transition , 2015, 1511.00097.

[21]  A regular version of Smilansky model , 2013, 1308.4249.

[22]  Self-adjoint indefinite Laplacians , 2016, Journal d'Analyse Mathématique.

[23]  Luis Vega,et al.  Shell Interactions for Dirac Operators: On the Point Spectrum and the Confinement , 2014, SIAM J. Math. Anal..

[24]  J. Behrndt,et al.  Two-dimensional Dirac operators with singular interactions supported on closed curves , 2019, Journal of Functional Analysis.

[25]  L. Vega,et al.  A strategy for self-adjointness of Dirac operators: Applications to the MIT bag model and $\delta$-shell interactions , 2016, Publicacions Matemàtiques.

[26]  An indefinite Laplacian on a rectangle , 2014, 1407.7802.

[27]  Spontaneous Edge Currents for the Dirac Equation in Two Space Dimensions , 2004, math-ph/0409021.

[28]  V. Derkach,et al.  The extension theory of Hermitian operators and the moment problem , 1995 .

[29]  J. Behrndt,et al.  Boundary Value Problems, Weyl Functions, and Differential Operators , 2020, Monographs in Mathematics.