Photoluminescence Control of Cellulose via Surface Functionalization Using Oxidative Polymerization.

Control of the photoluminescence properties of cellulose is conducted by introduction of conducting polymers including fluorene (F) and 3-hexylthiophene (3HT) on cellulose surface through FeCl3 oxidative polymerization. The UV-vis absorption peak of cellulose grafted with the 3-hexylthiophene and fluorene copolymer was increasingly blue-shifted with increasing fluorene content and the shift in the peak position in photoluminescence spectra depend on the initial 3HT:F ratio of the copolymer. The crystallinity and thermal stability of cellulose decreased slightly upon graft polymerization with PF and P3HT, while the quantum yield, determined using absolute methods, increased from 3.1 to 9.7% with increasing fluorene content. The roles of the 3HT and F copolymers in improving the properties of cellulose were thoroughly studied by FT-IR, UV-vis, fluorescence, X-ray diffraction (XRD), thermogravimetric (TG), transmission electron microscopy-energy dispersive X-ray (TEM-EDX), and quantum yield measurements. Mechanistic insight into the grafting reaction is also provided.

[1]  B. N. Misra,et al.  Grafting onto cellulose. V. Effect of complexing agents on Fenton's reagent (fe2+−H2O2) ‐initiated grafting of poly(ethyl acrylate) , 1979 .

[2]  Mercedes Fernández,et al.  Thermal behavior of cellulosic graft copolymers. II. Cotton grafted with binary mixtures of vinyl acetate and methyl acrylate , 1990 .

[3]  A. Dufresne,et al.  Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. , 2009, Biomacromolecules.

[4]  A. Carlmark,et al.  Grafting of cellulose by ring-opening polymerisation – A review , 2012 .

[5]  K. Gupta,et al.  Temperature-responsive cellulose by ceric(IV) ion-initiated graft copolymerization of N-isopropylacrylamide. , 2003, Biomacromolecules.

[6]  R. Sugimoto,et al.  The Catalytic Oxidative Polymerization of 3-Hexylthiophene by Oxidation of Fe2+ to Fe 3+ , 2017, Catalysis Letters.

[7]  A. Aly,et al.  Synthesis and characterization of cellulose ion exchanger. II. Pilot scale and utilization in dye-heavy metal removal , 1998 .

[8]  R. Sugimoto,et al.  Kinetics Study on 3-Hexylthiophene Polymerization with Iron(III) Chloride , 2013 .

[9]  R. Koepsel,et al.  Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. , 2004, Biomacromolecules.

[10]  J. Háfren,et al.  Direct Organocatalytic Polymerization from Cellulose Fibers , 2005 .

[11]  N. Nishioka,et al.  Homogeneous Graft Copolymerization of Vinyl Monomers onto Cellulose in a Dimethyl Sulfoxide– Paraformaldehyde Solvent System. I. Acrylonitrile and Methyl Methacrylate , 1981 .

[12]  Howard E. Katz,et al.  Organic molecular solids as thin film transistor semiconductors , 1997 .

[13]  H. Kubota,et al.  Comparison of Fe2+ ? H2O2 and Fe3+ ? H2O2 initiation systems in graft copolymerization of cellulosic materials , 1969 .

[14]  DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP. , 2012, ACS applied materials & interfaces.

[15]  S. T. Iacono,et al.  Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation , 2001 .

[16]  Shiai Xu,et al.  Low bandgap polymers synthesized by FeCl3 oxidative polymerization , 2010 .

[17]  R. Sugimoto,et al.  Synthesis and Properties of Stable 3-Hexylthiophene and Triphenylamine Copolymers , 2016 .

[18]  W. K. El-Zawawy,et al.  Cellulose membranes grafted with vinyl monomers in a homogeneous system , 2002 .

[19]  Mercedes Fernández,et al.  Thermal behavior of cellulosic graft copolymers. I. Cotton grafted with vinyl acetate and methyl acrylate , 1990 .

[20]  T. Peijs,et al.  The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites , 2008 .

[21]  Sébastien Perrier,et al.  Graft Polymerization: Grafting Poly(styrene) from Cellulose via Reversible Addition−Fragmentation Chain Transfer (RAFT) Polymerization , 2005 .

[22]  Jan-Erik Österholm,et al.  Polymerization of 3-alkylthiophenes with FeCl3 , 1992 .

[23]  S. Jenekhe,et al.  Bulk Heterojunction Solar Cells from Poly(3-butylthiophene)/Fullerene Blends: In Situ Self-Assembly of Nanowires, Morphology, Charge Transport, and Photovoltaic Properties , 2008 .

[24]  M. Toney,et al.  Highly oriented crystals at the buried interface in polythiophene thin-film transistors , 2006 .

[25]  T. Rosenau,et al.  Cellulose as matrix component of conducting films , 2011 .

[26]  D. Cerqueira,et al.  Production, characterization and evaluation of methylcellulose from sugarcane bagasse for applications as viscosity enhancing admixture for cement based material. , 2009 .

[27]  Naoya Yoshida,et al.  Thermal Decomposition of Cellulose/Synthetic Polymer Blends Containing Graft Copolymers , 1992 .

[28]  Jingkun Xu,et al.  Electrodeposition of high quality and freestanding poly(9,9‐dioctylfluorene‐co‐thiophene) films with good fluorescence properties , 2008 .

[29]  S. Perrier,et al.  Cellulose modification by polymer grafting: a review. , 2009, Chemical Society reviews.

[30]  K. Müllen,et al.  Light-Induced Solubility Modulation of Polyfluorene To Enhance the Performance of OLEDs. , 2015, Angewandte Chemie.

[31]  M. Cortázar,et al.  Thermogravimetric analysis of cellulose: Effect of the molecular weight on thermal decomposition , 1989 .

[32]  Eva Malmström,et al.  Atom transfer radical polymerization from cellulose fibers at ambient temperature. , 2002, Journal of the American Chemical Society.

[33]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[34]  M. Leclerc Polyfluorenes: Twenty years of progress , 2001 .

[35]  J. C. Scott,et al.  Thermally Stable Blue-Light-Emitting Copolymers of Poly(alkylfluorene) , 1998 .

[36]  K. Wei,et al.  Synthesis and Characterization of Luminescent Polyfluorenes Incorporating Side-Chain-Tethered Polyhedral Oligomeric Silsesquioxane Units , 2005 .

[37]  Samson A Jenekhe,et al.  Highly efficient solar cells based on poly(3-butylthiophene) nanowires. , 2008, Journal of the American Chemical Society.

[38]  M. Lewin,et al.  The influence of fine structure on the pyrolysis of cellulose. I. Vacuum pyrolysis , 1973 .

[39]  A. Fane,et al.  Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process , 2003 .

[40]  Keita Sakakibara,et al.  Polythiophene-cellulose composites: synthesis, optical properties and homogeneous oxidative co-polymerization , 2011 .

[41]  D. Sherrington,et al.  Graft copolymer of acrylamide onto cellulose as mercury selective sorbent , 1999 .

[42]  H. Brumer,et al.  Grafting of Cellulose Fibers with Poly(E-caprolactone) and Poly(L-lactic acid) via Ring-Opening Polymerization , 2006 .

[43]  Hanafi Ismail,et al.  The effect of acetylation on interfacial shear strength between plant fibres and various matrices , 2001 .

[44]  J. Roncali Conjugated poly(thiophenes): synthesis, functionalization, and applications , 1992 .

[45]  G. Wegner,et al.  Structural study of a n-alkylthiophene polymer grown in an oriented ultrathin matrix of alkylcellulose , 1999 .

[46]  I. Ikeda,et al.  Cationic Graft Polymerization of 2-Oxazolines on Cellulose Derivatives , 1988 .

[47]  T. McCarley,et al.  MALDI-MS Evaluation of Poly(3-hexylthiophene) Synthesized by Chemical Oxidation with FeCl3 , 2001 .

[48]  C. Barner‐Kowollik,et al.  Polystyrene comb polymers built on cellulose or poly(styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films , 2005 .

[49]  R. Sugimoto,et al.  Conjugated carbazole-thiophene copolymer: Synthesis, characterization and applications , 2016 .

[50]  M. Gurruchaga,et al.  Synthesis of Hydroxypropyl Methacrylate/Polysaccharide Graft Copolymers as Matrices for Controlled Release Tablets , 2002, Drug development and industrial pharmacy.

[51]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[52]  R. Sugimoto,et al.  Synthesis and characterization of copolymers composed of 3-hexylthiophene and fluorene via chemical oxidation with FeCl3 , 2016 .

[53]  R. Sugimoto,et al.  Effect of molar ratio of oxidizer/3-hexylthiophene monomer in chemical oxidative polymerization of poly(3-hexylthiophene) , 2017 .

[54]  B. Feit,et al.  Anionic graft polymerization of vinyl monomers on cellulose and polyvinyl alcohol , 1964 .

[55]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[56]  S. Boufi,et al.  Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation- pyrrole polymerization sequence , 2006 .

[57]  M. Lewin,et al.  The influence of fine structure on the pyrolysis of cellulose. II. Pyrolysis in air , 1973 .

[58]  Lili Zhang,et al.  Study on the cationic modification and dyeing of ramie fiber , 2007 .

[59]  Anna Carlmark,et al.  ATRP grafting from cellulose fibers to create block-copolymer grafts. , 2003, Biomacromolecules.

[60]  R. Sugimoto,et al.  Grafting poly(3-hexylthiophene) to the surface of polypropylene using oxidative polymerization , 2017 .

[61]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[62]  D. Gigmes,et al.  Synthesis of polystyrene-grafted cellulose acetate copolymers via nitroxide-mediated polymerization , 2015 .