Density Functional Theory Calculations for Multiple Conformers Explaining the Regio- and Stereoselectivity of Ti-Catalyzed Hydroaminoalkylation Reactions.

Hybrid Density Functional Theory (DFT) calculations for multiple conformers of the insertion reactions of a methylenecyclopropane into the Ti-C bond of two differently a-substituted titanaaziridines explain the experimentally observed differences in regioselectivity between catalytic hydroaminoalkylation reactions of methylenecyclopropanes with a-phenyl-substituted secondary amines and corresponding stoichiometric reactions of a methylenecyclopropane with titanaaziridines which can only be achieved with a-unsubstituted titanaaziridines. In addition, the lack of reactivity of a-phenyl-substituted titanaaziridines as well as the diastereoselectivity of the catalytic and stoichiometric reactions can be understood.

[1]  F. Neese Software update: The ORCA program system—Version 5.0 , 2022, WIREs Computational Molecular Science.

[2]  M. Schmidtmann,et al.  Stereoselective Synthesis of Tertiary Allylic Amines by Titanium‐Catalyzed Hydroaminoalkylation of Alkynes with Tertiary Amines , 2021, Chemistry.

[3]  H. Jónsson,et al.  Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following. , 2021, Journal of chemical theory and computation.

[4]  L. Schafer,et al.  Ureate Titanium Catalysts for Hydroaminoalkylation: Using Ligand Design to Increase Reactivity and Utility , 2021 .

[5]  Andreas Hansen,et al.  Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules. , 2021, The journal of physical chemistry. A.

[6]  M. Schmidtmann,et al.  Titanium‐Catalyzed Intermolecular Hydroaminoalkylation of Alkenes with Tertiary Amines , 2021, Angewandte Chemie.

[7]  M. Schmidtmann,et al.  Intermolecular Hydroaminoalkylation of Alkynes , 2021, Chemistry.

[8]  L. Schafer,et al.  Zirconium Catalyzed Hydroaminoalkylation for the Synthesis of α-Arylated Amines and N-Heterocycles. , 2021, Chemistry.

[9]  L. Schafer,et al.  Zirconium-Catalyzed Hydroaminoalkylation of Alkynes for the Synthesis of Allylic Amines. , 2020, Journal of the American Chemical Society.

[10]  R. Beckhaus,et al.  Intermolecular Hydroaminoalkylation of Propadiene , 2020, Chemistry.

[11]  L. Schafer,et al.  A Cyclic Ureate Tantalum Catalyst for Preferential Hydroaminoalkylation with Aliphatic Amines. Mechanistic Insights into Substrate Controlled Reactivity. , 2020, Journal of the American Chemical Society.

[12]  S. Doye,et al.  Linear Hydroaminoalkylation Products from Alkyl‐Substituted Alkenes , 2020, Chemistry.

[13]  S. Doye,et al.  Fast Titanium‐Catalyzed Hydroaminomethylation of Alkenes and the Formal Conversion of Methylamine , 2020, Angewandte Chemie.

[14]  M. Schmidtmann,et al.  Titanium‐Catalyzed Hydroaminoalkylation of Ethylene , 2019, Chemistry.

[15]  G. Sammis,et al.  Zirconium Hydroaminoalkylation. An Alternative Disconnection for the Catalytic Synthesis of α-Arylated Primary Amines. , 2019, Journal of the American Chemical Society.

[16]  S. Bräse,et al.  Planar‐Chiral [2.2]Paracyclophane‐Based Pyridonates as Ligands for Tantalum‐Catalyzed Hydroaminoalkylation , 2019, ChemCatChem.

[17]  B. Breit,et al.  Regiodivergent Hydroaminoalkylation of Alkynes and Allenes by a Combined Rhodium and Photoredox Catalytic System. , 2019, Angewandte Chemie.

[18]  S. Grimme Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. , 2019, Journal of chemical theory and computation.

[19]  C. Bannwarth,et al.  A generally applicable atomic-charge dependent London dispersion correction. , 2018, The Journal of chemical physics.

[20]  C. Bannwarth,et al.  GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. , 2018, Journal of chemical theory and computation.

[21]  E. Schulz,et al.  Hydroamination and Hydroaminoalkylation of Alkenes by Group 3–5 Elements: Recent Developments and Comparison with Late Transition Metals , 2018, Organometallics.

[22]  Thomas Teusch,et al.  Theoretical Studies on the Hydroaminoalkylation of Alkenes with Primary and Secondary Amines. , 2018, Chemistry.

[23]  M. Schmidtmann,et al.  Titanium Catalysts with Linked Indenyl–Amido Ligands for Hydroamination and Hydroaminoalkylation Reactions , 2018, Organometallics.

[24]  S. Doye,et al.  Dimethylamine as a Substrate in Hydroaminoalkylation Reactions. , 2017, Angewandte Chemie.

[25]  S. Doye,et al.  Dimethylamin als Substrat in Hydroaminoalkylierungsreaktionen , 2017 .

[26]  jin-quan yu,et al.  Practical Alkoxythiocarbonyl Auxiliaries for Iridium(I)-Catalyzed C-H Alkylation of Azacycles. , 2017, Angewandte Chemie.

[27]  P. Eisenberger,et al.  Amidate Complexes of Tantalum and Niobium for the Hydroaminoalkylation of Unactivated Alkenes , 2017 .

[28]  M. Schnürch,et al.  Quaternary Ammonium Salts as Alkylating Reagents in C-H Activation Chemistry. , 2017, Organic letters.

[29]  M. Schmidtmann,et al.  Reactions of Secondary Amines with Bis(η5:η1-pentafulvene)titanium Complexes: Formation of Titanium Amides and Titanaaziridines , 2017 .

[30]  H. Kjaergaard,et al.  Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical Hydrogen Shift Reactions. , 2016, The journal of physical chemistry. A.

[31]  M. Schmidtmann,et al.  A New N‐Trityl‐Substituted Aminopyridinato Titanium Catalyst for Hydroamination and Hydroaminoalkylation Reactions – Unexpected Intramolecular C–H Bond Activation , 2015 .

[32]  M. Schmidtmann,et al.  Efficient access to titanaaziridines by C-H activation of N-methylanilines at ambient temperature. , 2015, Angewandte Chemie.

[33]  R. Beckhaus,et al.  Effizienter Zugang zu Titanaaziridinen durch C‐H‐Aktivierung von N‐Methylanilinen bei Raumtemperatur , 2015 .

[34]  L. Schafer,et al.  Hydroaminoalkylation: Early-Transition-Metal-Catalyzed α-Alkylation of Amines , 2014, Synthesis.

[35]  T. Opatz,et al.  Unique regioselectivity in the C(sp3)-H α-alkylation of amines: the benzoxazole moiety as a removable directing group. , 2014, Organic letters.

[36]  Jaika Dörfler,et al.  Ein 2,6‐Bis(phenylamino)pyridinato‐Titan‐Katalysator für die hoch regioselektive Hydroaminoalkylierung von Styrolen und 1,3‐Butadienen , 2014 .

[37]  M. Schmidtmann,et al.  A 2,6-bis(phenylamino)pyridinato titanium catalyst for the highly regioselective hydroaminoalkylation of styrenes and 1,3-butadienes. , 2014, Angewandte Chemie.

[38]  B. Maes,et al.  Directed Ruthenium‐Catalyzed C(sp3) ? H α‐Alkylation of Cyclic Amines Using Dioxolane‐Protected Alkenones , 2014 .

[39]  J. Dörfler,et al.  A Commercially Available Tantalum Catalyst for the Highly Regioselective Intermolecular Hydroaminoalkylation of Styrenes , 2014 .

[40]  Lianhui Wang,et al.  Ruthenium(II)-catalyzed C(sp3)-H α-alkylation of pyrrolidines. , 2014, Organic letters.

[41]  L. Schafer,et al.  2-Pyridonate titanium complexes for chemoselectivity. Accessing intramolecular hydroaminoalkylation over hydroamination. , 2013, Organic letters.

[42]  W. Saak,et al.  Titanium-catalyzed intermolecular hydroaminoalkylation of conjugated dienes. , 2013, Chemistry.

[43]  Jaika Dörfler,et al.  Aminopyridinato‐Titan‐Katalysatoren für die Hydroaminoalkylierung von Alkenen und Styrolen , 2013 .

[44]  J. Dörfler,et al.  Aminopyridinato titanium catalysts for the hydroaminoalkylation of alkenes and styrenes. , 2013, Angewandte Chemie.

[45]  S. Grimme Supramolecular binding thermodynamics by dispersion-corrected density functional theory. , 2012, Chemistry.

[46]  A. Reznichenko,et al.  The mechanism of hydroaminoalkylation catalyzed by group 5 metal binaphtholate complexes. , 2012, Journal of the American Chemical Society.

[47]  S. Pan,et al.  Ir(I)‐Catalyzed Enantioselective Secondary sp3 C—H Bond Activation of 2‐(Alkylamino)pyridines with Alkenes. , 2012 .

[48]  Thomas N. Müller,et al.  Der Mechanismus der titankatalysierten Hydroaminoalkylierung von Alkenen , 2011 .

[49]  T. Müller,et al.  The mechanism of the titanium-catalyzed hydroaminoalkylation of alkenes. , 2011, Angewandte Chemie.

[50]  S. Doye,et al.  [Ind2TiMe2]: a catalyst for the hydroaminomethylation of alkenes and styrenes. , 2010, Angewandte Chemie.

[51]  Sven Doye,et al.  [Ind2TiMe2]: ein Katalysator für die Hydroaminomethylierung von Alkenen und Styrolen , 2010 .

[52]  P. Eisenberger,et al.  Tantalum-amidate complexes for the hydroaminoalkylation of secondary amines: enhanced substrate scope and enantioselective chiral amine synthesis. , 2009, Angewandte Chemie.

[53]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[54]  F. Neese,et al.  Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange , 2009 .

[55]  P. Eisenberger,et al.  Selective C-H activation alpha to primary amines. Bridging metallaaziridines for catalytic, intramolecular alpha-alkylation. , 2009, Journal of the American Chemical Society.

[56]  Sven Doye,et al.  Titankatalysierte Hydroaminoalkylierung von Alkenen durch C‐H‐Aktivierung an sp3‐Zentren in der α‐Position zum Stickstoffatom , 2009 .

[57]  S. Doye,et al.  Titanium-catalyzed hydroaminoalkylation of alkenes by C-H bond activation at sp3 centers in the alpha-position to a nitrogen atom. , 2009, Angewandte Chemie.

[58]  J. Hartwig,et al.  Hydroaminoalkylation of unactivated olefins with dialkylamines. , 2008, Journal of the American Chemical Society.

[59]  Carsten Müller,et al.  Neutral Group-IV Metal Catalysts for the Intramolecular Hydroamination of Alkenes , 2008 .

[60]  J. Hartwig,et al.  Direct, catalytic hydroaminoalkylation of unactivated olefins with N-alkyl arylamines. , 2007, Journal of the American Chemical Society.

[61]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[62]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[63]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[64]  S. Murai,et al.  Ru(3)(CO)(12)-catalyzed coupling reaction of sp(3) C-H bonds adjacent to a nitrogen atom in alkylamines with alkenes. , 2001, Journal of the American Chemical Society.

[65]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[66]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[67]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[68]  D. Gilson,et al.  Barriers to rotation of the cyclopentadienyl ligand: spin-lattice relaxation time measurements and atom–atom potential calculations on cyclopentadienyl manganese and rhenium tricarbonyl and vanadium tetracarbonyl complexes , 1983 .

[69]  M. Clerici,et al.  Catalytic C-Alkylation of Secondary Amines with Alkenes , 1980 .

[70]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[71]  P. Roesky Catalytic hydroaminoalkylation. , 2009, Angewandte Chemie.

[72]  C. Jun Chelation-assisted alkylation of benzylamine derivatives by Ru0 catalyst , 1998 .

[73]  W. A. Nugent,et al.  Catalytic C-H activation in early transition-metal dialkylamides and alkoxides , 1983 .