A general framework for trajectory data warehousing and visual OLAP

In this paper we present a formal framework for modelling a trajectory data warehouse (TDW), namely a data warehouse aimed at storing aggregate information on trajectories of moving objects, which also offers visual OLAP operations for data analysis. The data warehouse model includes both temporal and spatial dimensions, and it is flexible and general enough to deal with objects that are either completely free or constrained in their movements (e.g., they move along a road network). In particular, the spatial dimension and the associated concept hierarchy reflect the structure of the environment in which the objects travel. Moreover, we cope with some issues related to the efficient computation of aggregate measures, as needed for implementing roll-up operations. The TDW and its visual interface allow one to investigate the behaviour of objects inside a given area as well as the movements of objects between areas in the same neighbourhood. A user can easily navigate the aggregate measures obtained from OLAP queries at different granularities, and get overall views in time and in space of the measures, as well as a focused view on specific measures, spatial areas, or temporal intervals. We discuss two application scenarios of our TDW, namely road traffic and vessel movement analysis, for which we built prototype systems. They mainly differ in the kind of information available for the moving objects under observation and their movement constraints.

[1]  Jiawei Han,et al.  Selective Materialization: An Efficient Method for Spatial Data Cube Construction , 1998, PAKDD.

[2]  Nikos Pelekis,et al.  Visual Mobility Analysis using T-Warehouse , 2011, Int. J. Data Warehous. Min..

[3]  Matteo Golfarelli,et al.  The Dimensional Fact Model: A Conceptual Model for Data Warehouses , 1998, Int. J. Cooperative Inf. Syst..

[4]  Gennady L. Andrienko,et al.  Visual analytics of movement: An overview of methods, tools and procedures , 2013, Inf. Vis..

[5]  James D. Myers,et al.  Web 2.0 geospatial visual analytics for improved urban flooding situational awareness and assessment , 2009, GIS.

[6]  Gennady L. Andrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[7]  Hua Lu,et al.  Indoor - A New Data Management Frontier , 2010, IEEE Data Eng. Bull..

[8]  Nikos Pelekis,et al.  HERMES: aggregative LBS via a trajectory DB engine , 2008, SIGMOD Conference.

[9]  Gennady Andrienko,et al.  A General Framework for Using Aggregation in Visual Exploration of Movement Data , 2010 .

[10]  Alexandru Telea,et al.  Mastering The Information Age: Solving Problems with Visual Analytics , 2010 .

[11]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[12]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[13]  Hamid Pirahesh,et al.  Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals , 1996, Data Mining and Knowledge Discovery.

[14]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC.

[15]  Rock Santerre,et al.  Utilisation du système de positionnement par satellites (GPS) et des outils d'exploration et d'analyse SOLAP pour l'évaluation et le suivi de sportifs de haut niveau , 2004 .

[16]  Samuel Madden,et al.  TrajStore: An adaptive storage system for very large trajectory data sets , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[17]  AndrienkoNatalia,et al.  A visual analytics framework for spatio-temporal analysis and modelling , 2013 .

[18]  Jason Dykes,et al.  Seeking structure in records of spatio-temporal behaviour: visualization issues, efforts and applications , 2003, Comput. Stat. Data Anal..

[19]  Renzo Orsini,et al.  Trajectory Data Warehouses: Design and Implementation Issues , 2007, J. Comput. Sci. Eng..

[20]  Latanya Sweeney,et al.  Achieving k-Anonymity Privacy Protection Using Generalization and Suppression , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[21]  Pat Hanrahan,et al.  Polaris: a system for query, analysis and visualization of multi-dimensional relational databases , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[22]  Gennady L. Andrienko,et al.  Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[23]  Yufei Tao,et al.  Historical spatio-temporal aggregation , 2005, TOIS.

[24]  Torben Bach Pedersen,et al.  Multidimensional data modeling for location-based services , 2002, GIS '02.

[25]  Bart Kuijpers,et al.  Spatial aggregation: Data model and implementation , 2007, Inf. Syst..

[26]  Max J. Egenhofer,et al.  Topological Relations Between Regions with Holes , 1994, Int. J. Geogr. Inf. Sci..

[27]  Daniel A. Keim,et al.  Mastering the Information Age - Solving Problems with Visual Analytics , 2010 .

[28]  Ralf Hartmut Güting,et al.  Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases , 1999, GeoInformatica.

[29]  Bart Kuijpers,et al.  A Survey of Spatio-Temporal Data Warehousing , 2009, Int. J. Data Warehous. Min..

[30]  Christophe Hurter,et al.  Exploring spatiotemporal patterns by integrating visual analytics with a moving objects database system , 2011, GIS.

[31]  Dominique Barth,et al.  Indexing in-network trajectory flows , 2011, The VLDB Journal.

[32]  Esteban Zimányi,et al.  Representing spatiality in a conceptual multidimensional model , 2004, GIS '04.

[33]  Sandro Bimonte,et al.  When Spatial Analysis Meets OLAP: Multidimensional Model and Operators , 2010, Int. J. Data Warehous. Min..

[34]  Dieter Pfoser,et al.  Trajectory Indexing Using Movement Constraints* , 2005, GeoInformatica.

[35]  Salvatore Orlando,et al.  Frequent spatio-temporal patterns in trajectory data warehouses , 2009, SAC '09.

[36]  Yufei Tao,et al.  Query Processing in Spatial Network Databases , 2003, VLDB.

[37]  Ralf Hartmut Güting,et al.  SECONDO: A Platform for Moving Objects Database Research and for Publishing and Integrating Research Implementations , 2010, IEEE Data Eng. Bull..

[38]  Nikos Pelekis,et al.  Boosting location-based services with a moving object database engine , 2006, MobiDE '06.

[39]  Donald G. Janelle,et al.  Information, Place, and Cyberspace: Issues in Accessibility , 2000 .

[40]  Ralph Kimball,et al.  The Data Warehouse Lifecycle Toolkit , 2009 .

[41]  Ralf Hartmut Güting,et al.  Modeling and querying moving objects in networks , 2006, The VLDB Journal.

[42]  Natalia Adrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011 .

[43]  Esteban Zimányi,et al.  Logical Representation of a Conceptual Model for Spatial Data Warehouses , 2007, GeoInformatica.

[44]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[45]  D. Brillinger,et al.  An exploratory data analysis (EDA) of the paths of moving animals , 2004 .

[46]  Torben Bach Pedersen,et al.  Capturing complex multidimensional data in location-based data warehouses , 2004, GIS '04.

[47]  Diansheng Guo,et al.  Visual analytics of spatial interaction patterns for pandemic decision support , 2007, Int. J. Geogr. Inf. Sci..

[48]  Stephen G. Eick Visualizing multi-dimensional data , 2000, SIGGRAPH 2000.

[49]  Xiaofang Zhou,et al.  MOIR/MT: Monitoring Large-Scale Road Network Traffic in Real-Time , 2009, Proc. VLDB Endow..

[50]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[51]  Nectaria Tryfona,et al.  Pre-aggregation in Spatial Data Warehouses , 2001, SSTD.

[52]  David S. Ebert,et al.  Visual Analytics on Mobile Devices for Emergency Response , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[53]  Jeffrey Considine,et al.  Spatio-temporal aggregation using sketches , 2004, Proceedings. 20th International Conference on Data Engineering.

[54]  Thiago Luís Lopes Siqueira,et al.  The SB-index and the HSB-index: efficient indices for spatial data warehouses , 2011, GeoInformatica.

[55]  Daniel A. Keim,et al.  Visual analysis of news streams with article threads , 2010, StreamKDD '10.

[56]  Nikos Pelekis,et al.  Building real-world trajectory warehouses , 2008, MobiDE '08.

[57]  Ralf Hartmut Güting,et al.  Spatiotemporal pattern queries , 2011, GeoInformatica.

[58]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[59]  Christian S. Jensen,et al.  Computational data modeling for network-constrained moving objects , 2003, GIS '03.

[60]  Stefan Wrobel,et al.  Visual analytics tools for analysis of movement data , 2007, SKDD.

[61]  Xiaofeng Meng,et al.  An OLAP system for network-constrained moving objects , 2007, SAC '07.

[62]  Hua Lu,et al.  Indexing the Trajectories of Moving Objects in Symbolic Indoor Space , 2009, SSTD.

[63]  Chris North,et al.  Temporal, geographical and categorical aggregations viewed through coordinated displays: a case study with highway incident data , 1999, NPIVM '99.

[64]  Nikos Pelekis,et al.  T-Warehouse: Visual OLAP analysis on trajectory data , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[65]  Bart Kuijpers,et al.  A data model and query language for spatio-temporal decision support , 2011, GeoInformatica.

[66]  Markus Schneider,et al.  A foundation for representing and querying moving objects , 2000, TODS.

[67]  Pip Forer,et al.  Space, Time and Sequencing: Substitution at the Physical/ Virtual Interface , 2000 .

[68]  Panos Kalnis,et al.  Indexing spatio-temporal data warehouses , 2002, Proceedings 18th International Conference on Data Engineering.