Theoretical Models of Neural Development

Constructing a functioning nervous system requires the precise orchestration of a vast array of mechanical, molecular, and neural-activity-dependent cues. Theoretical models can play a vital role in helping to frame quantitative issues, reveal mathematical commonalities between apparently diverse systems, identify what is and what is not possible in principle, and test the abilities of specific mechanisms to explain the data. This review focuses on the progress that has been made over the last decade in our theoretical understanding of neural development.

[1]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[2]  Yoshihiro Morishita,et al.  Encoding and decoding of positional information in morphogen-dependent patterning. , 2012, Current opinion in genetics & development.

[3]  Geoffrey J. Goodhill,et al.  Calcium and cAMP Levels Interact to Determine Attraction versus Repulsion in Axon Guidance , 2012, Neuron.

[4]  Elaine M Faustman,et al.  Computational models of neocortical neuronogenesis and programmed cell death in the developing mouse, monkey, and human. , 2007, Cerebral cortex.

[5]  Emre O. Neftci,et al.  Data and Power Efficient Intelligence with Neuromorphic Learning Machines , 2018, iScience.

[6]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[7]  P Dayan,et al.  How receptor diffusion influences gradient sensing , 2015, Journal of The Royal Society Interface.

[8]  Michael Nguyen,et al.  Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models , 2016, Neuroscience & Biobehavioral Reviews.

[9]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Wulfram Gerstner,et al.  Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  J. Chilton Molecular mechanisms of axon guidance. , 2006, Developmental biology.

[12]  Adrienne L Fairhall,et al.  Emergence of Adaptive Computation by Single Neurons in the Developing Cortex , 2013, The Journal of Neuroscience.

[13]  Randal A. Koene,et al.  NETMORPH: A Framework for the Stochastic Generation of Large Scale Neuronal Networks With Realistic Neuron Morphologies , 2009, Neuroinformatics.

[14]  Colin J. Akerman,et al.  Random synaptic feedback weights support error backpropagation for deep learning , 2016, Nature Communications.

[15]  Krishanu Saha,et al.  Signal dynamics in Sonic hedgehog tissue patterning , 2006, Development.

[16]  David J. Willshaw,et al.  Competition for neurotrophic factor in the development of nerve connections , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  K. Miller,et al.  A Theory of the Transition to Critical Period Plasticity: Inhibition Selectively Suppresses Spontaneous Activity , 2013, Neuron.

[18]  Elaine Fuchs,et al.  Tissue patterning and cellular mechanics , 2015, The Journal of cell biology.

[19]  Yoshua Bengio,et al.  Towards Biologically Plausible Deep Learning , 2015, ArXiv.

[20]  James Briscoe,et al.  Morphogen interpretation: the transcriptional logic of neural tube patterning. , 2013, Current opinion in genetics & development.

[21]  Roman Borisyuk,et al.  A Developmental Approach to Predicting Neuronal Connectivity from Small Biological Datasets: A Gradient-Based Neuron Growth Model , 2014, PloS one.

[22]  M. Poo,et al.  The cell biology of neuronal navigation , 2001, Nature Cell Biology.

[23]  Leah Edelstein-Keshet,et al.  Polarization and migration in the zebrafish posterior lateral line system , 2017, PLoS Comput. Biol..

[24]  N. Swindale A model for the formation of ocular dominance stripes , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  A. V. Ooyen Using theoretical models to analyse neural development , 2011, Nature Reviews Neuroscience.

[26]  Jochen Triesch,et al.  Independent Component Analysis in Spiking Neurons , 2010, PLoS Comput. Biol..

[27]  Peter Dayan,et al.  Control of neurite growth and guidance by an inhibitory cell-body signal , 2018, PLoS Comput. Biol..

[28]  Paul C Bressloff,et al.  Model of Growth Cone Membrane Polarization via Microtubule Length Regulation. , 2015, Biophysical journal.

[29]  W. Gerstner,et al.  Hebbian plasticity requires compensatory processes on multiple timescales , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  Wulfram Gerstner,et al.  Phenomenological models of synaptic plasticity based on spike timing , 2008, Biological Cybernetics.

[31]  Geoffrey J. Goodhill,et al.  Can Molecular Gradients Wire the Brain? , 2016, Trends in Neurosciences.

[32]  Lily Yeh Jan,et al.  Branching out: mechanisms of dendritic arborization , 2010, Nature Reviews Neuroscience.

[33]  Dmitri B. Chklovskii,et al.  Blind Nonnegative Source Separation Using Biological Neural Networks , 2017, Neural Computation.

[34]  Everton J. Agnes,et al.  Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks , 2015, Nature Communications.

[35]  Marla B. Feller,et al.  Cellular Mechanisms Underlying Spatiotemporal Features of Cholinergic Retinal Waves , 2012, The Journal of Neuroscience.

[36]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[37]  Shin Ishii,et al.  Multi-phasic bi-directional chemotactic responses of the growth cone , 2016, Scientific Reports.

[38]  Clare E. Giacomantonio,et al.  A Boolean Model of the Gene Regulatory Network Underlying Mammalian Cortical Area Development , 2010, PLoS Comput. Biol..

[39]  Ernst Niebur,et al.  A model for neuronal competition during development , 2008, International Journal of Developmental Neuroscience.

[40]  Y. Dan,et al.  Spike timing-dependent plasticity: from synapse to perception. , 2006, Physiological reviews.

[41]  Clare E. Giacomantonio,et al.  A computational model of the effect of gene misexpression on the development of cortical areas , 2014, Biological Cybernetics.

[42]  Tarek A. El-Ghazawi,et al.  Novel Models of Visual Topographic Map Alignment in the Superior Colliculus , 2016, PLoS Comput. Biol..

[43]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[44]  Tzu-Jen Kao,et al.  Netrin1 Produced by Neural Progenitors, Not Floor Plate Cells, Is Required for Axon Guidance in the Spinal Cord , 2017, Neuron.

[45]  C. Clopath,et al.  The emergence of functional microcircuits in visual cortex , 2013, Nature.

[46]  J. Leo van Hemmen,et al.  Spontaneously emerging direction selectivity maps in visual cortex through STDP , 2005, Biological Cybernetics.

[47]  Shin Ishii,et al.  Mathematical modeling of neuronal polarization during development. , 2014, Progress in molecular biology and translational science.

[48]  Arjen van Ooyen,et al.  A Mathematical Framework for Modeling Axon Guidance , 2006, Bulletin of mathematical biology.

[49]  Peter Dayan,et al.  Bayes-Optimal Chemotaxis , 2011, Neural Computation.

[50]  Thomas Miconi,et al.  Spontaneous emergence of fast attractor dynamics in a model of developing primary visual cortex , 2016, Nature Communications.

[51]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[52]  Jan Kierfeld,et al.  Feedback mechanism for microtubule length regulation by stathmin gradients. , 2014, Biophysical journal.

[53]  Philip K Maini,et al.  Mathematical Modeling of Cortical Neurogenesis Reveals that the Founder Population does not Necessarily Scale with Neurogenic Output , 2018, Cerebral cortex.

[54]  Li-Huei Tsai,et al.  Guiding neuronal cell migrations. , 2010, Cold Spring Harbor perspectives in biology.

[55]  Kristian Franze The Mechanical Control of Nervous System Development , 2017 .

[56]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[57]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[58]  K. Franze The mechanical control of nervous system development , 2013, Development.

[59]  Stephen J. Eglen,et al.  A Multi-Component Model of the Developing Retinocollicular Pathway Incorporating Axonal and Synaptic Growth , 2009, PLoS Comput. Biol..

[60]  A. Lander Pattern, Growth, and Control , 2011, Cell.

[61]  G. Goodhill,et al.  Axon guidance by growth-rate modulation , 2010, Proceedings of the National Academy of Sciences.

[62]  Adrienne L. Fairhall,et al.  Intrinsic Neuronal Properties Switch the Mode of Information Transmission in Networks , 2014, PLoS Comput. Biol..

[63]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[64]  C. Malsburg,et al.  A mechanism for producing continuous neural mappings: ocularity dominance stripes and ordered retino , 1976 .

[65]  G. Catig,et al.  Experimental and computational models of neurite extension at a choice point in response to controlled diffusive gradients , 2015, Journal of neural engineering.

[66]  Shen-Ju Chou,et al.  Area Patterning of the Mammalian Cortex , 2007, Neuron.

[67]  Alexander Sher,et al.  Competition is a driving force in topographic mapping , 2011, Proceedings of the National Academy of Sciences.

[68]  P. Dayan,et al.  A Bayesian model predicts the response of axons to molecular gradients , 2009, Proceedings of the National Academy of Sciences.

[69]  Yu Zhao,et al.  Robust active binocular vision through intrinsically motivated learning , 2013, Front. Neurorobot..

[70]  Silvestro Micera,et al.  A hybrid computational model to predict chemotactic guidance of growth cones , 2015, Scientific Reports.

[71]  Fredric M. Wolf,et al.  Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis , 2011, PLoS Comput. Biol..

[72]  Michael P. Stryker,et al.  Stochastic Interaction between Neural Activity and Molecular Cues in the Formation of Topographic Maps , 2015, Neuron.

[73]  Erik De Schutter,et al.  Context-aware modeling of neuronal morphologies , 2014, Front. Neuroanat..

[74]  Gabriel Wittum,et al.  NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D , 2006, Neurocomputing.

[75]  Roman Borisyuk,et al.  Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord , 2017, Scientific Reports.

[76]  N. V. Swindale,et al.  Development of Ocular Dominance Stripes, Orientation Selectivity, and Orientation Columns , 2002 .

[77]  Seong-Seng Tan,et al.  The stochastic search dynamics of interneuron migration. , 2009, Biophysical journal.

[78]  David Holcman,et al.  A Mechanism for the Polarity Formation of Chemoreceptors at the Growth Cone Membrane for Gradient Amplification during Directional Sensing , 2010, PloS one.

[79]  G. Goodhill Contributions of Theoretical Modeling to the Understanding of Neural Map Development , 2007, Neuron.

[80]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[81]  Mu-ming Poo,et al.  Early events in axon/dendrite polarization. , 2012, Annual review of neuroscience.

[82]  Adrienne L Fairhall,et al.  Relationship between individual neuron and network spontaneous activity in developing mouse cortex. , 2014, Journal of neurophysiology.

[83]  David C Sterratt,et al.  Quantitative assessment of computational models for retinotopic map formation , 2015, Developmental neurobiology.

[84]  Nicholas V. Swindale,et al.  Modeling Development in Retinal Afferents: Retinotopy, Segregation, and EphrinA/EphA Mutants , 2014, PloS one.

[85]  C. Shatz,et al.  Dynamic Processes Shape Spatiotemporal Properties of Retinal Waves , 1997, Neuron.

[86]  Matthieu Gilson,et al.  Models of Metaplasticity: A Review of Concepts , 2015, Front. Comput. Neurosci..

[87]  Julijana Gjorgjieva,et al.  Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity , 2015, The Journal of Neuroscience.

[88]  David Holcman,et al.  Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks. , 2009, Biophysical journal.

[89]  W. Gerstner,et al.  Connectivity reflects coding: a model of voltage-based STDP with homeostasis , 2010, Nature Neuroscience.

[90]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[91]  R. Sperry CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Nikki Vercauteren,et al.  Introduction to Mathematical Modeling , 2015 .

[93]  Stephen Emmott,et al.  How neurons migrate: a dynamic in-silico model of neuronal migration in the developing cortex , 2011, BMC Systems Biology.

[94]  Geoffrey J Goodhill,et al.  Axon growth regulation by a bistable molecular switch , 2018, Proceedings of the Royal Society B: Biological Sciences.

[95]  M. Akam,et al.  Drosophila development: making stripes inelegantly. , 1989, Nature.

[96]  Julijana Gjorgjieva,et al.  Understanding neural circuit development through theory and models , 2017, Current Opinion in Neurobiology.

[97]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[98]  Jianhua Cang,et al.  New Model of Retinocollicular Mapping Predicts the Mechanisms of Axonal Competition and Explains the Role of Reverse Molecular Signaling during Development , 2012, The Journal of Neuroscience.

[99]  Gary F. Egan,et al.  Biomechanisms for modelling cerebral cortical folding , 2009, Medical Image Anal..

[100]  Geoffrey J. Goodhill,et al.  Axonal Growth and Targeting , 2012 .

[101]  Thomas L. Dean,et al.  Neural Networks and Neuroscience-Inspired Computer Vision , 2014, Current Biology.

[102]  Leah Edelstein-Keshet,et al.  A Comparison of Computational Models for Eukaryotic Cell Shape and Motility , 2012, PLoS Comput. Biol..

[103]  Qing Nie,et al.  Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain , 2012, Molecular systems biology.

[104]  Barry D. Hughes,et al.  An In Silico Agent-Based Model Demonstrates Reelin Function in Directing Lamination of Neurons during Cortical Development , 2014, PloS one.

[105]  Helen H Yang,et al.  Genetically Encoded Voltage Indicators: Opportunities and Challenges , 2016, The Journal of Neuroscience.

[106]  David Sept,et al.  Mathematical modeling of cell migration. , 2008, Methods in cell biology.

[107]  A. Litwin-Kumar,et al.  Formation and maintenance of neuronal assemblies through synaptic plasticity , 2014, Nature Communications.

[108]  Michael Akam,et al.  Making stripes inelegantly , 1989, Nature.

[109]  Lilach Avitan,et al.  Emergence of spontaneous assembly activity in developing neural networks without afferent input , 2018, PLoS Comput. Biol..

[110]  Henry S. Greenside,et al.  Pattern Formation and Dynamics in Nonequilibrium Systems , 2004 .

[111]  P Dayan,et al.  The influence of receptor positioning on chemotactic information. , 2014, Journal of theoretical biology.

[112]  Nicolas Brunel,et al.  Frontiers in Computational Neuroscience Computational Neuroscience , 2022 .

[113]  Elise Savier,et al.  A molecular mechanism for the topographic alignment of convergent neural maps , 2017, eLife.

[114]  Arjen van Ooyen,et al.  Mathematical modelling and numerical simulation of the morphological development of neurons , 2006, BMC Neuroscience.

[115]  Alex Mogilner,et al.  A free-boundary model of a motile cell explains turning behavior , 2017, PLoS Comput. Biol..

[116]  C. Tomlin,et al.  Biology by numbers: mathematical modelling in developmental biology , 2007, Nature Reviews Genetics.

[117]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[118]  C. Shatz,et al.  Retinal Waves Are Governed by Collective Network Properties , 1999, The Journal of Neuroscience.

[119]  Marla B. Feller,et al.  A Role for Correlated Spontaneous Activity in the Assembly of Neural Circuits , 2013, Neuron.

[120]  Stephen J. Eglen,et al.  Burst-Time-Dependent Plasticity Robustly Guides ON/OFF Segregation in the Lateral Geniculate Nucleus , 2009, PLoS Comput. Biol..

[121]  W. Bialek,et al.  Physical limits to biochemical signaling. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[122]  C. Shatz,et al.  A Burst-Based “Hebbian” Learning Rule at Retinogeniculate Synapses Links Retinal Waves to Activity-Dependent Refinement , 2007, PLoS biology.

[123]  G. Striedter,et al.  Cortical folding: when, where, how, and why? , 2015, Annual review of neuroscience.

[124]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[125]  Bruce Graham,et al.  Biologically plausible models of neurite outgrowth. , 2005, Progress in brain research.

[126]  D. A. Baxter,et al.  Mathematical Modeling of Gene Networks , 2000, Neuron.

[127]  Alain Chédotal,et al.  Neuroscience in the third dimension: shedding new light on the brain with tissue clearing , 2017, Molecular Brain.

[128]  Melissa M. Harrison,et al.  A CRISPR view of development , 2014, Genes & development.

[129]  Peter Dayan,et al.  Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input , 2013, PLoS Comput. Biol..

[130]  Brendan A. Bicknell,et al.  The limits of chemosensation vary across dimensions , 2015, Nature Communications.

[131]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[132]  Matthias H Hennig,et al.  Early-Stage Waves in the Retinal Network Emerge Close to a Critical State Transition between Local and Global Functional Connectivity , 2009, The Journal of Neuroscience.

[133]  A. van Ooyen Competition in the development of nerve connections: a review of models. , 2001, Network.

[134]  Daniel A. Butts,et al.  The Applicability of Spike Time Dependent Plasticity to Development , 2010, Front. Syn. Neurosci..

[135]  Henry Kennedy,et al.  Cell-cycle control and cortical development , 2007, Nature Reviews Neuroscience.

[136]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[137]  Marcus Frean,et al.  The Upstart Algorithm: A Method for Constructing and Training Feedforward Neural Networks , 1990, Neural Computation.

[138]  Kerry A Landman,et al.  Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. , 2013, Developmental biology.

[139]  Geoffrey J. Goodhill,et al.  Calcium signaling in axon guidance , 2014, Trends in Neurosciences.

[140]  J. Rubenstein,et al.  Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders. , 2011, Journal of child psychology and psychiatry, and allied disciplines.

[141]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[142]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[143]  J. Sharpe,et al.  Positional information and reaction-diffusion: two big ideas in developmental biology combine , 2015, Development.

[144]  C. Ampe,et al.  Taking Aim at Moving Targets in Computational Cell Migration. , 2016, Trends in cell biology.

[145]  Timothy P Lillicrap,et al.  Towards deep learning with segregated dendrites , 2016, eLife.

[146]  Rodney J. Douglas,et al.  Frontiers in Computational Neuroscience , 2022 .

[147]  Shin Ishii,et al.  A diffusion-based neurite length-sensing mechanism involved in neuronal symmetry breaking , 2010, Molecular Systems Biology.

[148]  Henning Sprekeler,et al.  Inhibitory Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks , 2011, Science.

[149]  Jun Xu,et al.  The development of retinotectal maps: a review of models based on molecular gradients. , 2005, Network.

[150]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[151]  Taro Toyoizumi,et al.  A Local Learning Rule for Independent Component Analysis , 2016, Scientific Reports.

[152]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[153]  Lance A. Davidson,et al.  Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube , 2016, Birth defects research.

[154]  Alexander Borst,et al.  One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application , 2010, PLoS Comput. Biol..

[155]  A. van Ooyen,et al.  Independently Outgrowing Neurons and Geometry-Based Synapse Formation Produce Networks with Realistic Synaptic Connectivity , 2014, PloS one.

[156]  K. Miller,et al.  Modeling the Dynamic Interaction of Hebbian and Homeostatic Plasticity , 2014, Neuron.

[157]  Zac Pujic,et al.  The dynamics of growth cone morphology , 2015, BMC Biology.

[158]  G. Goodhill,et al.  Growth cone chemotaxis , 2008, Trends in Neurosciences.

[159]  Wulfram Gerstner,et al.  Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation , 2016, PLoS Comput. Biol..

[160]  S. Eglen,et al.  Modeling developmental patterns of spontaneous activity , 2011, Current Opinion in Neurobiology.

[161]  Risto Miikkulainen,et al.  Computational Maps in the Visual Cortex , 2005 .

[162]  Martin Bastmeyer,et al.  Chemoaffinity in topographic mapping revisited--is it more about fiber-fiber than fiber-target interactions? , 2014, Seminars in cell & developmental biology.

[163]  Geoffrey J Goodhill,et al.  Theoretical models of neural circuit development. , 2009, Current topics in developmental biology.

[164]  David J. Field,et al.  Innate Visual Learning through Spontaneous Activity Patterns , 2008, PLoS Comput. Biol..

[165]  L. Richards,et al.  Wiring the brain: the biology of neuronal guidance. , 2010, Cold Spring Harbor perspectives in biology.

[166]  Geoffrey J. Goodhill,et al.  A simple model can unify a broad range of phenomena in retinotectal map development , 2011, Biological Cybernetics.

[167]  Nando de Freitas,et al.  Cortical microcircuits as gated-recurrent neural networks , 2017, NIPS.

[168]  Barbara L Finlay,et al.  Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism , 2014, Proceedings of the National Academy of Sciences.

[169]  J. Lefévre,et al.  On the growth and form of cortical convolutions , 2016, Nature Physics.

[170]  P V Bayly,et al.  Mechanical forces in cerebral cortical folding: a review of measurements and models. , 2014, Journal of the mechanical behavior of biomedical materials.

[171]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[172]  Partha S. Bhagavatula,et al.  Sensory experience modifies feature map relationships in visual cortex , 2016, eLife.

[173]  M. Sur,et al.  Patterning and Plasticity of the Cerebral Cortex , 2005, Science.

[174]  A. Roberts,et al.  Can Simple Rules Control Development of a Pioneer Vertebrate Neuronal Network Generating Behavior? , 2014, The Journal of Neuroscience.

[175]  Geoffrey J. Goodhill,et al.  Chemotactic responses of growing neurites to precisely controlled gradients of nerve growth factor , 2018, Scientific Data.

[176]  David J Odde,et al.  Traction Dynamics of Filopodia on Compliant Substrates , 2008, Science.

[177]  Gordon Pipa,et al.  SORN: A Self-Organizing Recurrent Neural Network , 2009, Front. Comput. Neurosci..

[178]  Bruce P. Graham,et al.  Dynamics of outgrowth in a continuum model of neurite elongation , 2006, Journal of Computational Neuroscience.

[179]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[180]  Arjen Van Ooyen,et al.  Modeling neural development , 2003 .

[181]  Troy Shinbrot,et al.  Deterministic and stochastic elements of axonal guidance. , 2005, Annual review of biomedical engineering.

[182]  Matthias H. Hennig Retinal Waves, Models of , 2014, Encyclopedia of Computational Neuroscience.

[183]  Michael Robert DeWeese,et al.  A Sparse Coding Model with Synaptically Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes of V1 Simple Cell Receptive Fields , 2011, PLoS Comput. Biol..

[184]  Nicholas V. Swindale,et al.  Retinal Wave Behavior through Activity-Dependent Refractory Periods , 2007, PLoS Comput. Biol..

[185]  Marc Timme,et al.  Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity , 2011, Front. Comput. Neurosci..

[186]  Alex Mogilner,et al.  Membrane tension, myosin force, and actin turnover maintain actin treadmill in the nerve growth cone. , 2012, Biophysical journal.

[187]  James Briscoe,et al.  Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube , 2012, Cell.

[188]  W. Gerstner,et al.  Spike-Timing-Dependent Plasticity: A Comprehensive Overview , 2012, Front. Syn. Neurosci..

[189]  Jianhua Cang,et al.  Developmental mechanisms of topographic map formation and alignment. , 2013, Annual review of neuroscience.

[190]  Matthias Kaschube,et al.  Reorganization of columnar architecture in the growing visual cortex , 2009, Proceedings of the National Academy of Sciences.

[191]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[192]  Paola Causin,et al.  Autocatalytic Loop, Amplification and Diffusion: A Mathematical and Computational Model of Cell Polarization in Neural Chemotaxis , 2009, PLoS Comput. Biol..

[193]  Alain Chédotal,et al.  Floor plate-derived netrin-1 is dispensable for commissural axon guidance , 2017, Nature.

[194]  P. Dayan,et al.  An unsupervised learning model of neural plasticity: Orientation selectivity in goggle-reared kittens , 2007, Vision Research.

[195]  J. Pfister,et al.  A triplet spike-timing–dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations , 2011, Proceedings of the National Academy of Sciences.

[196]  Shin Ishii,et al.  A molecular model for axon guidance based on cross talk between rho GTPases. , 2005, Biophysical journal.

[197]  Arjen van Ooyen,et al.  Competitive Dynamics during Resource-Driven Neurite Outgrowth , 2014, PloS one.

[198]  K. Miller,et al.  A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. , 2008, Biophysical journal.

[199]  H. Meinhardt Orientation of chemotactic cells and growth cones: models and mechanisms. , 1999, Journal of cell science.

[200]  A. Lander,et al.  How Cells Know Where They Are , 2013, Science.

[201]  Giorgio A. Ascoli,et al.  A Comparative Computer Simulation of Dendritic Morphology , 2008, PLoS Comput. Biol..

[202]  Greg Lemke,et al.  A relative signalling model for the formation of a topographic neural map , 2004, Nature.

[203]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[204]  Jochen Guck,et al.  The biophysics of neuronal growth , 2010 .

[205]  Michael R. Ibbotson,et al.  The influence of restricted orientation rearing on map structure in primary visual cortex , 2010, NeuroImage.

[206]  W. Gerstner,et al.  The temporal paradox of Hebbian learning and homeostatic plasticity , 2017, Current Opinion in Neurobiology.

[207]  R. Linsker From basic network principles to neural architecture (series) , 1986 .

[208]  Xiaoguang Chen,et al.  Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated , 2008, Physical biology.

[209]  W. H. Lewis,et al.  Mechanics of invagination , 1947, The Anatomical record.

[210]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[211]  Geoffrey J. Goodhill,et al.  Mathematical guidance for axons , 1998, Trends in Neurosciences.

[212]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[213]  M. Weliky,et al.  Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. , 1999, Science.

[214]  Philipp J. Keller,et al.  Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy , 2008, Science.

[215]  Arjen van Ooyen,et al.  Compartment volume influences microtubule dynamic instability: a model study. , 2006, Biophysical journal.

[216]  Bruno Cessac,et al.  A biophysical model explains the spontaneous bursting behavior in the developing retina , 2017, Scientific Reports.