Moving Objects Tracking Using Statistical Models
暂无分享,去创建一个
[1] P. KaewTrakulPong,et al. An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .
[2] L. Davis,et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.
[3] K. P. Karmann,et al. Moving object recognition using an adaptive background memory , 1990 .
[4] H. Grabner,et al. Autonomous Learning of a Robust Background Model for Change Detection ∗ , 2006 .
[5] Jitendra Malik,et al. Towards robust automatic traffic scene analysis in real-time , 1994, Proceedings of 12th International Conference on Pattern Recognition.
[6] Larry S. Davis,et al. Non-parametric Model for Background Subtraction , 2000, ECCV.
[7] D. Koller,et al. Towards robust automatic traffic scene analysis in real-time , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[8] Joachim M. Buhmann,et al. Topology Free Hidden Markov Models: Application to Background Modeling , 2001, ICCV.
[9] Fatih Murat Porikli,et al. A Bayesian Approach to Background Modeling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.
[10] Andrew Blake,et al. A Probabilistic Background Model for Tracking , 2000, ECCV.
[11] W. Eric L. Grimson,et al. Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).