Stepwise Monomicelle Assembly for Highly Ordered Mesoporous TiO2 Membranes with Precisely Tailored Mesophase and Porosity

[1]  Y. Yamauchi,et al.  Porous Nanoarchitectures of Nonprecious Metal Borides: From Controlled Synthesis to Heterogeneous Catalyst Applications , 2022, ACS Catalysis.

[2]  Victor Malgras,et al.  Soft Template-Based Synthesis of Mesoporous Phosphorus- and Boron-Codoped NiFe-Based Alloys for Efficient Oxygen Evolution Reaction. , 2022, Small.

[3]  M. Stefik,et al.  Understanding Rapid Intercalation Materials One Parameter at a Time , 2022, Advanced Functional Materials.

[4]  S. Guldin,et al.  Faster Intercalation Pseudocapacitance Enabled by Adjustable Amorphous Titania where Tunable Isomorphic Architectures Reveal Accelerated Lithium Diffusivity , 2022, Batteries & Supercaps.

[5]  Ziqing Li,et al.  Application of Nanostructured TiO2 in UV Photodetectors: A Review , 2022, Advanced materials.

[6]  X. Lou,et al.  Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion , 2021, Advanced materials.

[7]  D. Zhao,et al.  Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance. , 2021, Journal of the American Chemical Society.

[8]  S. Guldin,et al.  Nanostructure Dependence of T‐Nb2O5 Intercalation Pseudocapacitance Probed Using Tunable Isomorphic Architectures , 2020, Advanced Functional Materials.

[9]  O. Terasaki,et al.  Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction , 2020, Nature.

[10]  Y. Bando,et al.  A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis , 2020, Nature Protocols.

[11]  Victor Malgras,et al.  Coalescence-driven verticality in mesoporous TiO2 thin films with long-range ordering. , 2020, Journal of the American Chemical Society.

[12]  X. Lou,et al.  Co3O4 Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. , 2020, Angewandte Chemie.

[13]  Mietek Jaroniec,et al.  Roadmap for advanced aqueous batteries: From design of materials to applications , 2020, Science Advances.

[14]  O. Yaghi,et al.  MOF water harvesters , 2020, Nature Nanotechnology.

[15]  D. Zhao,et al.  A Universal Lab‐on‐Salt‐Particle Approach to 2D Single‐Layer Ordered Mesoporous Materials , 2020, Advanced materials.

[16]  D. Zhao,et al.  Spherical Mesoporous Materials from Single to Multilevel Architectures. , 2019, Accounts of chemical research.

[17]  D. Zhao,et al.  Confined Interfacial Monomicelle Assembly for Precisely Controlled Coating of Single-Layered Titania Mesopores , 2019, Matter.

[18]  Y. Yamauchi,et al.  Asymmetric Multimetallic Mesoporous Nanospheres. , 2019, Nano letters.

[19]  D. Zhao,et al.  Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures , 2018, Chem.

[20]  M. Jaroniec,et al.  Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance , 2018, Science Advances.

[21]  A. Rowan,et al.  Mesoporous Metallic Iridium Nanosheets. , 2018, Journal of the American Chemical Society.

[22]  S. Valenzuela,et al.  Bottom-up synthesis of multifunctional nanoporous graphene , 2018, Science.

[23]  Cuiling Li,et al.  Mesoporous metallic rhodium nanoparticles , 2017, Nature Communications.

[24]  X. Lou,et al.  Complex Hollow Nanostructures: Synthesis and Energy‐Related Applications , 2017, Advanced materials.

[25]  D. Zhao,et al.  Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. , 2017, Journal of the American Chemical Society.

[26]  X. Lou,et al.  A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties , 2016, Science Advances.

[27]  Cuiling Li,et al.  Nanoarchitectures for Mesoporous Metals , 2016, Advanced materials.

[28]  Sol M Gruner,et al.  Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors , 2016, Science Advances.

[29]  Abdullah M. Al-Enizi,et al.  Radially oriented mesoporous TiO2 microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices , 2015, Science Advances.

[30]  X. Lou,et al.  TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. , 2014, Angewandte Chemie.

[31]  Wei Li,et al.  Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. , 2014, Angewandte Chemie.

[32]  J. Banfield,et al.  Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. , 2014, Chemical reviews.

[33]  D. Zhao,et al.  A Perspective on Mesoporous TiO2 Materials , 2014 .

[34]  D. Zhao,et al.  A resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing. , 2013, Angewandte Chemie.

[35]  Yu-zhu Wang,et al.  A facile approach for controlling the orientation of one-dimensional mesochannels in mesoporous titania films. , 2012, Journal of the American Chemical Society.

[36]  H. Snaith,et al.  Layer-by-layer formation of block-copolymer-derived TiO(2) for solid-state dye-sensitized solar cells. , 2012, Small.

[37]  D. Zhao,et al.  Ligand‐Assisted Assembly Approach to Synthesize Large‐Pore Ordered Mesoporous Titania with Thermally Stable and Crystalline Framework , 2011 .

[38]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[39]  Sol M Gruner,et al.  Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly , 2008, Science.

[40]  P. Bruce,et al.  Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. , 2008, Journal of the American Chemical Society.

[41]  Jinwoo Lee,et al.  Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. , 2008, Nature materials.

[42]  D. Zhao,et al.  Synthesis of highly ordered mesoporous crystalline WS(2) and MoS(2) via a high-temperature reductive sulfuration route. , 2007, Journal of the American Chemical Society.

[43]  Haoshen Zhou,et al.  Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode , 2007 .

[44]  T. Ohsuna,et al.  Formation of highly ordered mesoporous titania films consisting of crystalline nanopillars with inverse mesospace by structural transformation. , 2006, Journal of the American Chemical Society.

[45]  Markus Antonietti,et al.  Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. , 2005, Angewandte Chemie.

[46]  Sung Yeun Choi,et al.  Thermally Stable Two‐Dimensional Hexagonal Mesoporous Nanocrystalline Anatase, Meso‐nc‐TiO2: Bulk and Crack‐Free Thin Film Morphologies , 2004 .

[47]  Haoshen Zhou,et al.  Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization , 2004, Nature materials.

[48]  D. Zhao,et al.  Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs , 2003, Nature materials.

[49]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[50]  J. Ying,et al.  Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method , 1995 .