Equation of state of nonadditive d-dimensional hard-sphere mixtures.

An equation of state for a multicomponent mixture of nonadditive hard spheres in d dimensions is proposed. It yields a rather simple density dependence and constitutes a natural extension of the equation of state for additive hard spheres proposed by us [A. Santos, S. B. Yuste, and M. Lopez de Haro, Mol. Phys. 96, 1 (1999)]. The proposal relies on the known exact second and third virial coefficients and requires as input the compressibility factor of the one-component system. A comparison is carried out both with another recent theoretical proposal based on a similar philosophy and with the available exact results and simulation data in d=1, 2, and 3. Good general agreement with the reported values of the virial coefficients and of the compressibility factor of binary mixtures is observed, especially for high asymmetries and/or positive nonadditivities.

[1]  P. Cummings,et al.  Fluid phase equilibria , 2005 .

[2]  S. Luding,et al.  Molecular dynamics and theory for the contact values of the radial distribution functions of hard-disk fluid mixtures. , 2004, The Journal of chemical physics.

[3]  K. Jagannathan,et al.  Molecular dynamics simulations of a fluid near its critical point. , 2004, Physical review letters.

[4]  G. Pellicane,et al.  Replica Ornstein-Zernike self-consistent theory for mixtures in random pores. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  R. Fantoni,et al.  Computer simulation study of the closure relations in hard sphere fluids. , 2004, The Journal of chemical physics.

[6]  R. Fantoni,et al.  Direct correlation functions of the Widom–Rowlinson model , 2003, cond-mat/0308433.

[7]  R. Castañeda-Priego,et al.  Depletion forces in two-dimensional colloidal mixtures , 2003 .

[8]  A. Vlasov,et al.  Binary mixtures of hard spheres: how far can one go with the virial equation of state? , 2003 .

[9]  W. Góźdź Critical-point and coexistence curve properties of a symmetric mixture of nonadditive hard spheres: A finite size scaling study , 2003 .

[10]  K. Jagannathan,et al.  Monte Carlo simulations for the phase behavior of symmetric nonadditive hard sphere mixtures , 2003 .

[11]  T. Bickel Depletion forces near a soft surface , 2003, cond-mat/0302595.

[12]  Y. Duda,et al.  Stability and interfacial properties of confined nonadditive hard-sphere binary mixture , 2003 .

[13]  F. Saija,et al.  Monte Carlo simulation and phase behavior of nonadditive hard-core mixtures in two dimensions , 2002 .

[14]  S. B. Yuste,et al.  Contact values of the radial distribution functions of additive hard-sphere mixtures in d dimensions: A new proposal , 2002, cond-mat/0203182.

[15]  Y. Duda,et al.  Fluid–fluid phase equilibria in disordered porous media. Nonadditive hard sphere mixture , 2001 .

[16]  A. Yethiraj,et al.  An Integral Equation Theory for the Widom–Rowlinson Mixture , 2000 .

[17]  E. Hamad,et al.  Volume-explicit equation of state and phase behavior for mixtures of hard disks , 2000 .

[18]  D. Corti,et al.  Statistical geometry of hard sphere systems: exact relations for additive and non-additive mixtures , 1999 .

[19]  E. Hamad,et al.  Modeling and simulation of equation of state for nonadditive hard disk mixtures , 1999 .

[20]  F. Saija,et al.  ENTROPY AND FLUID-FLUID SEPARATION IN NONADDITIVE HARD-SPHERE MIXTURES , 1998 .

[21]  F. Saija,et al.  Virial expansion of a non-additive hard-sphere mixture , 1998 .

[22]  E. Hamad RESEARCH NOTE Simulation and model testing of size asymmetric non-additive hard spheres , 1997 .

[23]  H. Gould,et al.  Monte Carlo Study of the Widom-Rowlinson Fluid Using Cluster Methods , 1997, cond-mat/9704163.

[24]  Hartmut Löwen,et al.  Fundamental-measure free-energy density functional for hard spheres: Dimensional crossover and freezing , 1997 .

[25]  Bildstein,et al.  Structure and thermodynamics of binary liquid mixtures: Universality of the bridge functional. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  E. Hamad Contact pair correlation functions and equation of state for nonadditive hard‐sphere mixtures , 1996 .

[27]  E. Hamad A general mixture theory. I. Mixtures of spherical molecules , 1996 .

[28]  E. Lomba,et al.  Phase stability of binary non‐additive hard‐sphere mixtures: A self‐consistent integral equation study , 1996 .

[29]  E. Hamad,et al.  A simple model for size non-additive mixtures , 1996 .

[30]  S. B. Yuste,et al.  An accurate and simple equation of state for hard disks , 1995 .

[31]  G. Kahl,et al.  On the use of a non-additive reference system in a reference hypernetted chain calculation of the structure of a binary liquid , 1995 .

[32]  M. Jhon,et al.  Fluid–fluid phase separations in nonadditive hard sphere mixtures , 1995 .

[33]  D. Gazzillo Stability of fluids with more than two components , 1994 .

[34]  E. Hamad Consistency test for mixture pair correlation function integrals , 1994 .

[35]  H. M. Schaink A molecular dynamics study of a three component mixture of hard spheres with negative non-additive interactions , 1994 .

[36]  M. Jhon,et al.  An analytic equation of state and structural properties of nonadditive hard sphere mixtures , 1994 .

[37]  M. Rovere,et al.  Fluid-fluid phase separation in binary mixtures of asymmetric non-additive hard spheres , 1994 .

[38]  M. Jhon,et al.  Homo- and heterocoordination in nonadditive hard-sphere mixtures and a test of the van der Waals one-fluid model , 1994 .

[39]  H. M. Schaink About the Usage of Scaling Parameters in the Scaled Particle Theory of Mixtures of Non-Additive Hard Spheres , 1993 .

[40]  H. M. Schaink,et al.  The phase-behavior of Lennard-Jones mixtures with nonadditive hard cores : comparison between molecular dynamic calculations and perturbation theory , 1992 .

[41]  D. Gazzillo Fluid–fluid phase separation of nonadditive hard‐sphere mixtures as predicted by integral‐equation theories , 1991 .

[42]  H. Frisch,et al.  Binary nonadditive hard-sphere mixtures at high dimension , 1991 .

[43]  A. Harvey,et al.  Computer simulation of fluid–fluid phase coexistence in mixtures of nonadditive soft disks , 1991 .

[44]  H. M. Schaink,et al.  Pressure and coexistence curve of two- and three-dimensional nonadditive hard core mixtures. Exact computer calculation results compared with scaled particle theory predictions , 1990 .

[45]  R. Mazo,et al.  Scaled particle theory for mixtures of nonadditive hard disks or hard spheres: An alternative scaling , 1990 .

[46]  D. Gazzillo,et al.  The role of excluded volume effects on the structure and chemical short-range order of Ni33Y67 metallic glass , 1990 .

[47]  Luo,et al.  Transport coefficients of the Widom-Rowlinson mixture. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[48]  G. Kahl Nonadditive hard‐sphere reference system for a perturbative liquid state theory of binary systems , 1990 .

[49]  G. Stell,et al.  Static and dynamic properties of the Widom–Rowlinson model mixture. I , 1990 .

[50]  Hoheisel Phase separation in binary nonadditive soft-sphere mixtures. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[51]  R. Mazo,et al.  Studies of a version of scaled particle theory for nonadditive hard disks. II. Fluid–fluid phase equilibria , 1989 .

[52]  J. Amar Application of the Gibbs ensemble to the study of fluid-fluid phase equilibrium in a binary mixture of symmetric non-additive hard spheres , 1989 .

[53]  D. Gazzillo Symmetric mixtures of hard spheres with positively nonadditive diameters: An approximate analytic solution of the Percus–Yevick integral equation , 1987 .

[54]  P. Ballone,et al.  Additive and non-additive hard sphere mixtures: Monte Carlo simulation and integral equation results. , 1986 .

[55]  I. Nezbeda,et al.  P-V-T behaviour of hard body fluids. Theory and experiment , 1986 .

[56]  M. Silbert,et al.  Percus-Yevick results for a binary mixture of hard spheres with non-additive diameters , 1984 .

[57]  G. Sarkisov,et al.  Exact equations and the theory of liquids , 1983 .

[58]  G. Stell,et al.  Transport properties of the Widom–Rowlinson hard‐sphere mixture model , 1979 .

[59]  W. Gelbart,et al.  Series representation of the equation of state for hard particle fluids , 1979 .

[60]  M. Silbert,et al.  Approximate solution of the Percus-Yevick equation for a binary mixture of hard spheres with non-additive diameters , 1979 .

[61]  R. Tenne,et al.  Scaled particle theory for mixtures of nonadditive hard discs , 1979 .

[62]  R. Tenne,et al.  Scaled particle theory for nonadditive hard spheres: Solutions for general positive nonadditivity , 1978 .

[63]  R. Tenne,et al.  Scaled particle theory of mixtures of hard spheres with negatively non-additive diameters , 1978 .

[64]  Eric Dickinson,et al.  Molecular dynamics simulation of hard-disc mixtures: Self-diffusion coefficients , 1977 .

[65]  E. Bergmann Scaled particle theory for non-additive hard spheres , 1976 .

[66]  E. Bergmann Scaled particle theory for nonadditive hard spheres. General solution in one dimension , 1976 .

[67]  Douglas Henderson,et al.  A simple equation of state for hard discs , 1975 .

[68]  I. R. Mcdonald,et al.  Fluids of hard spheres with nonadditive diameters , 1975 .

[69]  T. W. Melnyk,et al.  Equation of state of a mixture of hard spheres with non-additive diameters , 1975 .

[70]  J. S. Rowlinson,et al.  The distribution functions of the penetrable-sphere models of liquid-vapour equilibrium , 1974 .

[71]  J. Lebowitz,et al.  Results of Percus‐Yevick approximation for a binary mixture of hard spheres with nonadditive diameters; R11=R22=0, R12 > 0 , 1974 .

[72]  F. Stillinger,et al.  Critical-point thermodynamics of fluids without hole-particle symmetry , 1973 .

[73]  B. Widom,et al.  Virial Expansions for a Binary Mixture Model and for a Related One‐Component Model , 1972 .

[74]  T. W. Melnyk,et al.  The penetrable sphere and related models of liquid—vapour equilibrium , 1972 .

[75]  O. Penrose,et al.  A Functional Equation in the Theory of Fluids , 1972 .

[76]  H. Frisch,et al.  Molecular Dynamics of the Widom-Rowlinson Parallel Hard-Square Model , 1972 .

[77]  David Ruelle,et al.  A phase transition in a continuous classical system , 1971 .

[78]  J. Lebowitz,et al.  Mixtures of Hard Spheres with Nonadditive Diameters: Some Exact Results and Solution of PY Equation , 1971 .

[79]  John S. Rowlinson,et al.  New Model for the Study of Liquid–Vapor Phase Transitions , 1970 .

[80]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[81]  Joel L. Lebowitz,et al.  Scaled Particle Theory of Fluid Mixtures , 1965 .

[82]  R. Kikuchi Theory of One‐Dimensional Fluid Binary Mixtures , 1955 .

[83]  R. E. Heiges On sabbatical leave , 1954 .

[84]  Fumio Oosawa,et al.  On Interaction between Two Bodies Immersed in a Solution of Macromolecules , 1954 .