Hydrogen Storage Materials: Properties and Possibilities

The physics, chemistry, and possible applications of the storage of hydrogen in intermetallic reservoirs are discussed. Storage in the form of intermetallic hydrides can be safe and, where hydrogen has some special value as a fuel, economical. New pumps and refrigerators based on the heat of sorption of the hydrogen into the intermetallic are approaching commercial viability.

[1]  A. Pedersen,et al.  Magnesium for hydrogen storage , 1980 .

[2]  H. Buchner,et al.  The use of hydrides in motor vehicles , 1980 .

[3]  G. Sandrock,et al.  Surface poisoning of LaNi5, FeTi and (Fe,Mn)Ti by O2, Co and H2O☆ , 1980 .

[4]  M. Strongin,et al.  Uptake rates for hydrogen by niobium and tantalum: effect of thin metallic overlayers , 1980 .

[5]  D. Gruen,et al.  Current status and performance of the argonne Hycsos chemical heat pump system , 1980 .

[6]  R. L. Cohen,et al.  Degradation of LaNi5 by temperature-induced cycling , 1980 .

[7]  P. J. Viccaro,et al.  Surface segregation of iron by hydrogenation of FeTi: An 57Fe mössbauer conversion electron study☆ , 1980 .

[8]  A. Miedema,et al.  On the heat of formation of solid alloys , 1975 .

[9]  D. Davidov,et al.  Mössbauer studies of 155Gd in LaNi5 and LaCo5 hydrides , 1977 .

[10]  J. Sheridan,et al.  The effect of surface nickel on the hydriding-dehydriding kinetics of MgH2 , 1980 .

[11]  A. Miedema,et al.  The electronegativity parameter for transition metals: Heat of formation and charge transfer in alloys , 1973 .

[12]  D. Davidov,et al.  Hydrogen absorption and desorption properties of AB2 laves-phase pseudobinary compounds , 1977 .

[13]  C. Lartigue,et al.  Neutron and X-ray diffraction profile analyses and structure of LaNi5, LaNi5−xAlx and LaNi5−xMnx intermetallics and their hydrides (deuterides) , 1980 .

[14]  L. Schlapbach,et al.  Magnetic properties of LaNi5, FeTi, Mg2Ni and their hydrides☆ , 1980 .

[15]  F. Lynch Operating characteristics of high performance commercial metal hydride heat exchangers , 1980 .

[16]  G. Holleck,et al.  The use of LaNi5Hx-type hydrides in NiH2 batteries: Benefits and problems☆ , 1980 .

[17]  Dieter M. Gruen,et al.  Preparation and properties of porous metal hydride compacts , 1980 .

[18]  K.H.J. Buschow,et al.  Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation , 1974 .

[19]  E. L. Huston,et al.  Engineering properties of metal hydrides , 1980 .

[20]  H. Imamura,et al.  Mechanism of hydrogen absorption by lanthanum-nickel (LaNi5) , 1979 .

[21]  H. Buchner Perspectives for metal hydride technology , 1980 .

[22]  A. Rolle,et al.  Metal hydride fuel cells: A feasibility study and perspectives for vehicular applications , 1980 .

[23]  A. Bläsius,et al.  Mössbauer surface studies on Tife hydrogen storage material , 1980 .

[24]  H. Wasserman,et al.  The Ta(.mu.-N2)Ta system. 2. Crystal structure of [TaCl3(P(bz)3)(THF)]2(.mu.-N2)..apprx.0.7CH2Cl2. A binuclear di-imido complex of octahedral tantalum (V) , 1982 .

[25]  J. Reilly,et al.  Formation and properties of iron titanium hydride , 1974 .

[26]  R. Pruett,et al.  Synthesis gas: a raw material for industrial chemicals. , 1981, Science.

[27]  J. Swisher,et al.  Hydrides versus competing options for storing hydrogen in energy systems , 1980 .

[28]  J. Barrow,et al.  The structure of the early universe. , 1980 .