Pump Scheduling Optimization Using Asynchronous Parallel

Optimizing the pump-scheduling is an interesting proposal to achieve cost reductions in water distribution pumping stations. As systems grow, pump-scheduling becomes a very difficult task. In order to attack harder pump-scheduling problems, this work proposes the use of parallel asynchronous evolutionary algorithms as a tool to aid in solving an optimal pump-scheduling problem. In particular, this work considers a pump-scheduling problem having four objectives to be minimized: electric energy cost, maintenance cost, maximum power peak, and level variation in a reservoir. Parallel and sequential versions of different evolutionary algorithms for multiobjective optimization were implemented and their results compared using a set of experimental metrics. Analysis of metric results shows that our parallel asynchronous implementation of evolutionary algorithms is effective in searching for solutions among a wide range of alternative optimal pump schedules to choose from.

[1]  Kevin E Lansey,et al.  Optimal Pump Operations Considering Pump Switches , 1994 .

[2]  Kevin E Lansey,et al.  Optimal Control of Water Supply Pumping Systems , 1994 .

[3]  Erick Cantú-Paz Designing Efficient and Accurate Parallel Genetic Algorithms , 1999 .

[4]  P. J. Fleming,et al.  The Multi-Objective Genetic Algorithm Applied to Benchmark Problems An Analysis , 2001 .

[5]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[6]  Benjamín Barán,et al.  Algoritmos evolutivos para optimización multiobjetivo: un estudio comparativo en un ambiente paralelo asíncrono , 2004 .

[7]  Benjamín Barán,et al.  Multiobjective evolutionary algorithms in pump scheduling optimisation , 2002 .

[8]  Godfrey A. Walters,et al.  Multiobjective Genetic Algorithms for Pump Scheduling in Water Supply , 1997, Evolutionary Computing, AISB Workshop.

[9]  Godfrey A. Walters,et al.  Application of genetic algorithms to pump scheduling for water supply , 1995 .

[10]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[11]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[12]  D. V. Chase,et al.  Advanced Water Distribution Modeling and Management , 2003 .

[13]  John E. Freund,et al.  Probability and statistics for engineers , 1965 .

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  D.A. Van Veldhuizen,et al.  On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[16]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[18]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[19]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[20]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[21]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[22]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[23]  Gary B. Lamont,et al.  Considerations in engineering parallel multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[24]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .