Optomechanical sideband cooling of a thin membrane within a cavity

We present an experimental study of dynamical back-action cooling of the fundamental vibrational mode of a thin semitransparent membrane placed within a high-finesse optical cavity. We study how the radiation?pressure interaction modifies the mechanical response of the vibrational mode, and the experimental results are in agreement with a Langevin equation description of the coupled dynamics. The experiments are carried out in the resolved sideband regime, and we have observed cooling by a factor of ?350. We have also observed the mechanical frequency shift associated with the quadratic term in the expansion of the cavity mode frequency versus the effective membrane position, which is typically negligible in other cavity optomechanical devices.

[1]  Edith Innerhofer,et al.  An all-optical trap for a gram-scale mirror. , 2006, Physical review letters.

[2]  Christoph Simon,et al.  Towards quantum superpositions of a mirror , 2004 .

[3]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[4]  Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[6]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[9]  G. Giuseppe,et al.  Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane: Effect of membrane absorption , 2011 .

[10]  P. Meystre,et al.  Optical bistability and mirror confinement induced by radiation pressure , 1983 .

[11]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[12]  F. Brennecke,et al.  Cavity Optomechanics with a Bose-Einstein Condensate , 2008, Science.

[13]  V. Giovannetti,et al.  Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion , 2000, quant-ph/0006084.

[14]  Hai-Yang Cheng,et al.  Erratum: Branching ratios and polarization inB→VV,VA,AAdecays [Phys. Rev. D78, 094001 (2008)] , 2009 .

[15]  M. Pinard,et al.  Cooling of a Mirror by Radiation Pressure , 1999 .

[16]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[17]  M. Pinard,et al.  Self-cooling of a movable mirror to the ground state using radiation pressure , 2007, 0707.2038.

[18]  Hans Peter Buchler,et al.  An experimental and theoretical guide to strongly interacting Rydberg gases , 2012, 1202.2871.

[19]  Scott S. Verbridge,et al.  A megahertz nanomechanical resonator with room temperature quality factor over a million , 2008 .

[20]  A. M. Jayich,et al.  Dispersive optomechanics: a membrane inside a cavity , 2008, 0805.3723.

[21]  G. Di Giuseppe,et al.  Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment , 2011, 1112.6002.

[22]  Michael R. Vanner,et al.  Probing Planck-scale physics with quantum optics , 2011, Nature Physics.

[23]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[24]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[25]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[26]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[27]  Tobias J. Kippenberg,et al.  Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state , 2010, 1011.0290.

[28]  Michael R. Vanner,et al.  Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity , 2009, 0901.1801.

[29]  Ivan Favero,et al.  Cavity cooling of a nanomechanical resonator by light scattering , 2007, 0707.3117.

[30]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[31]  Markus Aspelmeyer,et al.  Quantum optomechanics—throwing a glance [Invited] , 2010, 1005.5518.

[32]  S. Gigan,et al.  Erratum: Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes [Phys. Rev. A 77, 033804 (2008)] , 2009 .

[33]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[34]  Sylvain Gigan,et al.  Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes , 2007, 0705.1728.

[35]  M. Padgett,et al.  Optical trapping and binding , 2013, Reports on progress in physics. Physical Society.

[36]  H. Kimble,et al.  Cavity optomechanics with stoichiometric SiN films. , 2009, Physical review letters.

[37]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[38]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[39]  P. Tombesi,et al.  Quantum Effects in Optomechanical Systems , 2009, 0901.2726.

[40]  D. Hunger,et al.  Fluctuating nanomechanical system in a high finesse optical microcavity. , 2009, Optics express.

[41]  A. M. Jayich,et al.  High quality mechanical and optical properties of commercial silicon nitride membranes , 2007, 0711.2263.

[42]  R. Pound,et al.  Electronic frequency stabilization of microwave oscillators. , 1946, The Review of scientific instruments.

[43]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[44]  D. Blume Few-body physics with ultracold atomic and molecular systems in traps , 2011, Reports on progress in physics. Physical Society.

[45]  E. Polzik,et al.  Optical cavity cooling of mechanical modes of a semiconductor nanomembrane , 2012, Nature Physics.

[46]  W. Marsden I and J , 2012 .

[47]  M. Roukes,et al.  Toward single-molecule nanomechanical mass spectrometry , 2005, Nature nanotechnology.

[48]  A. Sawadsky,et al.  Tomographic readout of an opto-mechanical interferometer , 2012, 1205.2241.

[49]  Ivan Favero,et al.  Optomechanics of deformable optical cavities , 2009 .

[50]  A. Gozzini,et al.  Light-pressure bistability at microwave frequencies , 1985 .

[51]  J. Sankey,et al.  Strong and tunable nonlinear optomechanical coupling in a low-loss system , 2010, 1002.4158.

[52]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[53]  P. Meystre,et al.  Optomechanical trapping and cooling of partially reflective mirrors , 2007, 0708.4078.

[54]  D. Stamper-Kurn,et al.  Observation of quantum-measurement backaction with an ultracold atomic gas , 2007, 0706.1005.

[55]  P. Tombesi,et al.  Robust entanglement of a micromechanical resonator with output optical fields , 2008, 0806.2045.

[56]  David E. McClelland,et al.  Observation and characterization of an optical spring , 2004 .